首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
根据群集智能优化原理,给出了一种基于萤火虫寻优思想的新算法———萤火虫群优化算法,并针对0-1背包问题进行求解。经仿真实验并与蜂群算法、蚁群算法和微粒群算法进行了比较,获得了满意的结果,这说明了算法在0-1背包问题求解上的有效性和具有更快的收敛速度,拓展了萤火虫群优化算法的应用领域。  相似文献   

3.
用基于贪婪算法的混合遗传算法求解0/1背包问题   总被引:1,自引:0,他引:1  
为了克服传统优化方法的缺点,提高求解的速度和精度,将贪婪算法的思想融入基本遗传算法之中,形成了基于贪婪算法的混合遗传算法.介绍用该算法求解0/1背包问题的基本思路和方法,通过实例计算证明了该方法的可行性和有效性.  相似文献   

4.
近年来针对各种问题提出了许多量子算法,这些量子算法都利用了量子态的可迭加性(Superposition)和纠缠性(Entan-glement),本文在量子环境下对0/1背包问题进行求解,介绍了量子算法的基本思想及相关概念。然后分析并给出求解0/1背包问题的量子算法,在量子物理环境下它能在多项式时间内求出所需要的解。这个量子算法可以推广解决其它NPC问题,如旅行售货员问题等。  相似文献   

5.
根据萤火虫算法的自身特点,将自适应权重、改进贪心算法、变异算子与基本萤火虫算法相结合,提出一种带权重的贪心萤火虫算法。通过加入自适应权重与变异算子,可以提高算法全局搜索能力,加入贪心算法在一定程度上可提高算法收敛速度,整体看,改进萤火虫算法提高了算法性能。通过仿真实验将改进后的算法与一些基本算法进行比较,实验结果表明,该算法在求解0-1背包问题时,无论在运算速度还是求解精度上都有明显改进。  相似文献   

6.
针对原有的遗传蚁群混合算法收敛速度慢、运行时间长等缺陷,提出了一种新混合算法,该算法从蚁群中选取部分优良个体采用遗传算法寻优,所选个体数目随迭代次数自适应变化,同时,对算法中的交叉、变异操作以及赋值等方面进行了一些改进。仿真结果表明,该算法在搜索能力、收敛速度以及程序运行时间方面都有明显的提高,由此证明了该算法的有效性。  相似文献   

7.
在量子计算机上求解0/1背包问题   总被引:6,自引:0,他引:6  
胡劲松  陈国良  郭光灿 《计算机学报》1999,22(12):1314-1316
在Grover算法和量子指数搜索算法的基础上,提出了一个量子算法去求解0/1背包问题。这个算法在没有使用任何可以提高搜索效率的经典策略的情况下,能够在O(c^2n/2)步以至少1-1/2^c的概率求解问题规模为n的0/1背包问题。  相似文献   

8.
一种求解0-1背包问题的快速蚁群算法   总被引:7,自引:1,他引:7  
0—1背包问题是典型的NP完全问题,且蚁群算法已成功地解决了许多组合优化的难题。因此,文中介绍一种基于蚁群算法求解0—1背包问题的算法,并对此算法进行优化,提出一种求解0—1背包问题的快速蚁群算法。它大大减少了蚁群算法的搜索时间,有效改善了蚁群算法易于过早地收敛于非最优解的缺陷,当物品数较大时,也取得了较好的求解质量。仿真实验取得了较好的结果。  相似文献   

9.
0-1背包问题是典型的NP完全问题,且蚁群算法已成功地解决了许多组合优化的难题。因此,文中介绍一种基于蚁群算法求解0-1背包问题的算法,并对此算法进行优化,提出一种求解0-1背包问题的快速蚁群算法。它大大减少了蚁群算法的搜索时间,有效改善了蚁群算法易于过早地收敛于非最优解的缺陷,当物品数较大时,也取得了较好的求解质量。仿真实验取得了较好的结果。  相似文献   

10.
求解0/1背包问题的离散差分进化算法   总被引:2,自引:0,他引:2  
0/1背包问题是实际中经常遇到的一类经典NP难组合优化问题.针对0/1背包问题,提出一种融合贪婪变换的离散差分进化算法.该算法中通过模2运算来实现变异操作;为了满足约束上限,融合了贪婪变换;为了防止早熟,采用了在进化若干代后重新初始化种群的策略.经数值实验表明,该算法在求解0/1背包问题时是可行的,有效的,比单纯的贪婪算法,融合贪婪变换的粒子群优化算法及融合贪婪变换的遗传算法更加稳健,良好.  相似文献   

11.
0/1背包问题是运筹学中一个经典组合优化NP问题。在简要介绍0/1背包问题基础上,分析展望了0/1背包问题的应用前景。结合已有研究成果,总结并详细分析了蚁群算法、微粒群算法等群体智能算法在0/1背包问题求解方面具有的较好收敛速度、健壮性、稳定性、算法简单等优点。最后,针对群体智能算法在求解0/1背包问题过程中所出现的缺陷,提出了群体智能算法在0/1背包问题求解需要进一步解决的几个问题。  相似文献   

12.
在结合贪婪算法的混合遗传算法中,将基于轮盘赌的选择算子改为稳态复制的选择算子,形成的新的混合遗传算法能显著加快收敛。文中也给出了结束迭代的两个判定条件。通过对三个实例的大量仿真实验,研究了交叉概率、种群数量和替换率对算法性能的影响。实验结果表明这一新算法收敛速度快,寻优能力强,更适合于求解大规模0/1背包问题。  相似文献   

13.
0-1背包问题是组合优化中经典的NP难题,在蚁群算法的基础上结合量子计算提出一种求解0-1背包问题的量子蚁群算法。算法采用量子比特表示信息素,用量子旋转门来更新信息素。大量数据实例的比较测试表明,算法可有效提高蚂蚁算法的性能,减少搜索时间,具有更好的全局寻优能力。  相似文献   

14.
0/1背包问题是个典型问题,其解法有很多,如回溯法、分枝限界法、动态规划法、递归策略等。本文以动态规划的方法(向前处理法)为例,详细解析了本问题,首先根据公式对问题一步步进行了推导,然后用图解法再次进行了研究,比较简单的解决了问题,并采用不同于资料上的方法,通过实例对其的可行性进行了验证,达到了预期的效果。  相似文献   

15.
0/1背包问题是个典型问题,其解法有很多,如回溯法、分枝限界法、动态规划法、递归策略等.本文以动态规划的方法(向前处理法)为例,详细解析了本问题,首先根据公式对问题一步步进行了推导,然后用图解法再次进行了研究,比较简单的解决了问题,并采用不同于资料上的方法,通过实例对其的可行性进行了验证,达到了预期的效果.  相似文献   

16.
为了求解离散空间中的最优化问题,提出了一种二进制蝙蝠算法,并引入时变惯性因子来提高算法的全局收敛速度;在此基础上,为提高求解0-1背包问题时找到最优解的机率,利用贪心优化策略对无效的蝙蝠个体进行优化,从而给出了贪心二进制蝙蝠算法(GBBA)。仿真计算结果表明,GBBA算法在寻优能力和收敛性能方面比已有的GMBA算法都更优越。  相似文献   

17.
为解决粒子群优化算法在求解0/1背包问题中的早熟收敛问题,将杂草优化算法应用到离散问题,提出了一种离散杂草优化算法(DIWO)。根据组合优化问题的特点,对原算法中正态分布于父代周围的子代进行离散化分析,引入遗传操作中的一种改进的变异机制,保证了新算法的有效性,使其具有局部的随机搜索能力。通过三个仿真实例验证,对比粒子群算法,新算法在种群数量较小、迭代次数较少的情况下能取得更好的结果。  相似文献   

18.
求解0-1背包问题算法综述   总被引:2,自引:0,他引:2  
0-1背包问题是一个典型的组合优化问题。给出了0-1背包问题的数学模型,概述了各种求解0/1背包问题的算法设计方法,并指出各种方法的优缺点,提出了0-1背包问题的发展趋势。  相似文献   

19.
0/1背包问题的贪心优化解法   总被引:3,自引:0,他引:3  
介绍了0/1背包问题的基本贪心算法的解决策略,通过对贪心算法的改进和优化,找出0/1背包问题的最优解的很好近似。  相似文献   

20.
一种新的求解0-1背包问题的混合算法   总被引:1,自引:1,他引:1  
该文汲取了蚁群算法(ACA)和抗体免疫克隆算法(AICA)的优点,提出了一种求解0-1背包问题的混合型算法,该算法充分利用了前者的搜索能力和后者的种群多样性。仿真实验对算法的部分参数进行了分析,并与其他文献的算法进行比较,结果表明,该算法是一种具有较高性能的混合优化算法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号