首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to make better use of lignocellulosic biomass for the production of renewable fuels and chemicals, it is necessary to disrupt its recalcitrant structure through pretreatment. Specifically, organosolv pretreatment is a feasible method. The main advantage of this method compared to other lignocellulosic pretreatment technologies is the extraction of high-quality lignin for the production of value-added products. In this study, bamboo was treated in a batch reactor with 70% ethanol at 180 °C for 2 h. Lignin fractions were isolated from the hydrolysate by centrifugation and then precipitated as ethanol organosolv lignin. Two types of milled wood lignins (MWLs) were isolated from the raw bamboo and the organosolv pretreated residue separately. After the pretreatment, a decrease of lignin (preferentially guaiacyl unit), hemicelluloses and less ordered cellulose was detected in the bamboo material. It was confirmed that the bamboo MWL is of HGS type (p-hydroxyphenyl (H), vanillin (G), syringaldehyde (S)) associated with a considerable amount of p-coumarate and ferulic esters of lignin. The ethanol organosolv treatment was shown to remove significant amounts of lignin and hemicelluloses without strongly affecting lignin primary structure and its lignin functional groups.  相似文献   

2.
In this study, biomass feedstocks, including lignocellulosic materials and the tannery wastes, were gasified in supercritical water. Gasification experiments were performed in a batch autoclave at 500 °C. The amount of gases, the gas compositions and the amount of water soluble compounds from gasification were determined. The hydrogen yields ranging between 4.05 and 4.65 mol H2/kg biomass have been obtained. The results showed that the yields and composition of gases depend also on the organic materials other than cellulose and lignin in lignocellulosic material. In addition to this, it was concluded that the kind of lignin may also have an effect on gasification products. In the case of tannery wastes, the type of tannen agent used in leather production considerably effected the gasification results.  相似文献   

3.
Bioconversion of lignocellulosic biomass to bioethanol has shown environmental, economic and energetic advantages in comparison to bioethanol produced from sugar or starch. However, the pretreatment process for increasing the enzymatic accessibility and improving the digestibility of cellulose is hindered by many physical-chemical, structural and compositional factors, which make these materials difficult to be used as feedstocks for ethanol production. A wide range of pretreatment methods has been developed to alter or remove structural and compositional impediments to (enzymatic) hydrolysis over the last few decades; however, only a few of them can be used at commercial scale due to economic feasibility. This paper will give an overview of extrusion pretreatment for bioethanol production with a special focus on twin-screw extruders. An economic assessment of this pretreatment is also discussed to determine its feasibility for future industrial cellulosic ethanol plant designs.  相似文献   

4.
5-羟甲基糠醛(HMF)是一种链接可再生生物质资源与燃料化合物及化学中间体的重要新型平台化合物。文中对高温(180—200℃)条件下,金属氯化物为催化剂,离子液体[BMIM]Cl为溶剂,木质纤维素(相思木木屑)为原料快速制备HMF和糠醛的反应过程进行了研究。通过对反应温度、原料用量、盐酸(HCl)添加量、催化剂种类及用量等因素进行考察,优化了反应条件。研究结果表明:与文献报道的低温下纤维素降解反应相比,高温条件可使木质纤维素为原料制备HMF的反应过程得到强化。在所考察的金属氯化物催化剂中,CrCl3.6H2O的催化效果最优,其中以CrCl3.6H2O为催化剂,200℃下反应4 min时产物HMF及糠醛的收率分别可达55.0%和22.9%。该高温反应过程反应快速、产物收率高,无需木质纤维素原料的预处理操作,为工业上简单快速制备HMF提供了一种可行方法。  相似文献   

5.
Nowadays, there is a tremendous global interest in the biofuels production. However, first generation biofuels have been debated about that energy-crop compete with food crops and thus cause food deficiency and price increases. In this sense, researchers have started looking for potential feedstock for ethanol such as lignocellulosic biomass (e.g., sugarcane bagasse), which does not affect food security. In this paper, the integrated use of sugarcane bagasse is analyzed as raw material for second generation of biofuels production. This case study implements a design and process integration to compare several biorefinery topologies using the typical mass flow rate of residual biomass produced by the sugar industry (1200 ton per day). Based on evaluation of chemical composition of bagasse (cellulose, hemicellulose, and lignin) several process schemes for integral utilization of biomass were proposed. This paper is the first part of the study on the exergy, life cycle analysis (LCA) and economic analysis of sugarcane bagasse for sustainable biofuels production using Aspen Plus™ software. Part 1 presents the exergy and life cycle analysis developed while part 2 describes economic analysis and selection of an optimal configuration with minimal environmental impact, by means of the combined use of raw material and energy integration.  相似文献   

6.
植物基因工程对生物燃料生物质特征的改进   总被引:2,自引:1,他引:1  
全球每年有多达10~50Gt的廉价植物纤维素可再生利用。美国年产40亿加仑的乙醇,大多数是以玉米为原料生产的。目前多数利用微生物产生的纤维素酶对植物纤维素进行降解预处理,去除木质素,转化为可发酵的糖,进而生产乙醇。发酵前预处理及微生物反应器产酶成本都比较高。最新的植物基因工程研究致力于改善这种状况,降低成本,利用植物自身产纤维素酶和木质素酶来降解纤维素和木质素,或者提高生物质总产量或在植株中增产纤维素。  相似文献   

7.
A high-efficiency, integrated bioethanol production process was developed in this study, using Miscanthus as lignocellulosic biomass. The continuous process involved a twin-screw extruder, a pretreated biomass washing/dewatering process, and a saccharification/fermentation process. In addition, the integration process was designed for the reuse of pretreatment solution and the production of highly concentrated bioethanol. Pretreatment was performed with 0.72 M NaOH solution at 95 °C using an 80 rpm twin-screw speed and a flow rate of 90mL/min (18 g/min of raw biomass feeding). Following washing and dewatering steps, the pretreated biomass was subjected to simultaneous saccharification and bioethanol fermentation processes. The maximum ethanol concentration, yield from biomass, and total volume obtained were 59.3 g/L, 89.9%, and 60 L, respectively, using a pretreated biomass loading of 23.1% (w/v) and an enzyme dosage of 30 FPU/g cellulose. The results presented here constitute an important contribution toward the production of bioethanol from Miscanthus.  相似文献   

8.
The current ethanol production processes using crops such as corn and sugar cane are well established. However, the utilization of cheaper biomasses such as lignocellulose could make bioethanol more competitive with fossil fuels, without the ethical concerns associated with the use of potential food resources. A cassava stem, a lignocellulosic biomass, was pretreated using dilute acid to produce bioethanol. The pretreatment conditions were evaluated using response surface methodology (RSM). As a result, the optimal conditions were 177 °C, 10 min and 0.14 M for the temperature, reaction time and acid concentration, respectively. The enzymatic digestibility of the pretreated cassava stem was examined at various enzyme loadings (10–40 FPU/g cellulose of cellulase and 30 CbU/g of β-glucosidase). With respect to economic feasibility, 20 FPU/g cellulose of cellulase and 30 CbU/g of β-glucosidase were selected for the test concentration and led to a saccharification yield of 70%. The fermentation of the hydrolyzed cassava stem using Saccharomyces cerevisiae resulted in an ethanol concentration of 7.55 g/L and a theoretical fermentation yield of 89.6%. This study made a significant contribution to the production of bioethanol from a cassava stem. Although the maximum ethanol concentration was low, an economically efficient overall process was carried out to convert a lignocellulosic biomass to bioethanol.  相似文献   

9.
木质纤维素类生物质制取燃料及化学品的研究进展   总被引:5,自引:0,他引:5  
木质纤维素类生物质含有丰富的纤维素和半纤维素多糖,通过微生物发酵将它们转化为能源及高附加值的化学品,对于缓解全球能源危机带来的压力和解决环境污染问题具有重要意义。介绍了木质纤维素类生物质的结构特征;评述了预处理方法,包括稀酸、高温液态水蒸气爆破、CO2爆破、氨爆、碱法、有机溶剂法、生物处理法;重点介绍由生物质生产乙醇、丁醇及生物柴油的研究现状。指出开发高效环保的预处理方法、构建耐毒高产菌株和应用连续发酵或补料批式发酵方式等是加快木质纤维素类生物质发酵利用工业化进程的关键所在。  相似文献   

10.
木糖发酵酒精代谢工程的研究进展   总被引:11,自引:0,他引:11  
木糖发酵是生物转化木质纤维素产生酒精及其他化工产品最为重要的一环,但自然界中缺少能将上述生物质有效转化为乙醇的微生物菌种. 近年来,根据代谢工程原理,利用基因工程技术对酵母和细菌进行遗传改造,或将木糖代谢途径引入传统的酒精发酵菌酿酒酵母及高酒精产生菌运动发酵单胞菌中,从而拓展其底物利用范围;或使原本可以利用多种糖底物的细菌获得选择性产生酒精的能力,构建了各种不同类型的木糖发酵重组菌株. 虽然这些重组菌株在木糖转化酒精方面均显示出良好的应用前景,但仍存在诸多问题. 有必要在对木糖代谢调控机制深入系统研究的基础上,进一步改造现有菌株,并结合生化工程技术对重组菌株发酵条件进行优化,以实现高效生物转化木质纤维素原料制取乙醇. 本工作介绍了近年来代谢工程改造微生物菌种发酵木糖生产酒精的研究进展.  相似文献   

11.
Sugarcane bagasse and trash are used as fuels in cogeneration systems for bioethanol production, supplying steam and electricity, but may also be used as feedstock for second generation ethanol. The amount of surplus lignocellulosic material used as feedstock depends on the energy consumption of the production process; residues of the pretreatment and hydrolysis operations (residual cellulose, lignin and eventually biogas from pentoses biodigestion) may be used as fuels and increase the amount of lignocellulosic material available as feedstock in hydrolysis. The configuration of the cogeneration system (boiler pressure, lignocellulosic material consumption and steam production, turbines efficiencies, among others) has a significant impact on consumption of fuel and electricity output; in the integrated first and second generation, it also affects overall ethanol production. Simulations of the integrated first and second generation ethanol production processes were carried out using Aspen Plus, comparing different configurations of the cogeneration systems and pentoses use (biodigestion and fermentation). Economic analysis shows that electricity sale can benefit second generation ethanol, even in relatively small amounts. Environmental analysis shows that the integrated first and second generation process has higher environmental impacts in most of the categories evaluated than first generation.  相似文献   

12.
木质纤维素燃料乙醇生物转化预处理技术   总被引:1,自引:0,他引:1  
由丰富的木质纤维素资源制备乙醇有利于缓解能源紧缺、减少环境污染、实现可持续发展.然而某些物理、化学因素阻碍了木质纤维素中纤维素和半纤维素的转化和利用.预处理引起物理和/或化学上的变化,主要目的是改变或去除各种结构和(或)化学障碍,增加纤维素酶解率和转化效果,是一系列纤维素乙醇转化技术中的关键和核心.本文就纤维素乙醇生物...  相似文献   

13.
Clostridium thermohydrosulfuricum has a number of characteristics which make it an attractive organism to use in a process to convert pretreated, lignocellulosic materials into alcohol. One such characteristic is its ability to convert the major products of cellulose hydrolysis, glucose, cellobiose, xylose and xylobiose into ethanol at relatively high yields. Experiments were carried out to investigate the kinetics of multiple sugar utilization. Results showed that glucose repressed the utilization of cellobiose, xylose and xylobiose all of which could otherwise be catabolized simultaneously in the absence of glucose. Further experiments with the glucose/cellobiose system showed that both transient and permanent repression occurred. A mathematical model was developed which successfully described the growth of Cl. thermohydrosulfuricum on mixtures of glucose and cellobiose in both batch and continuous culture.  相似文献   

14.
木质纤维生物质是储量丰富且最有前景的生产燃料乙醇的可再生生物质资源,利用木质纤维生物质生产乙醇主要包括以下步骤:原料预处理、发酵以及产物分离纯化,其中,原料的预处理工艺是限制纤维素乙醇产业化的一个技术瓶颈。本文对酸法、碱法、蒸汽爆破法、合成气法等7种典型预处理方法进行了介绍并对其工艺流程进行简要的说明,同时对不同的预处理方法的优劣、适用范围和工艺流程转化效率等进行了对比,以期为纤维素乙醇预处理方法的工艺选择和评价提供一些参考。提出了纤维素乙醇的产业化前景:不同预处理技术的合理结合使用会有效提高转化率;较好的过程设计能够降低成本,有利于整个过程的经济性。  相似文献   

15.
Non‐food lignocellulosic biomass is the most abundant renewable bioresource as a collectable, transportable, and storable chemical energy that is far from fully utilized. The goal of biomass pretreatment is to improve the enzymatic digestibility of pretreated lignocellulosic biomass. Many substrate factors, such as substrate accessibility, lignin content, particle size and so on, contribute to its recalcitrance. Cellulose accessibility to hydrolytic enzymes is believed to be the most important substrate characteristic limiting enzymatic hydrolysis. Cellulose solvents effectively break linkages among cellulose, hemicellulose and lignin, and also dissolve highly‐ordered hydrogen bonds in cellulose fibers accompanied with great increases in substrate accessibility. Here the history and recent advances in cellulose solvent‐based biomass pretreatment are reviewed and perspectives provided for addressing remaining challenges. The use of cellulose solvents, new and existing, provides opportunities for emerging biorefineries to produce a few precursors (e.g. monosaccharides, oligosaccharides, and lignin) for the production of low‐value biofuels and value‐added biochemicals. © 2012 Society of Chemical Industry  相似文献   

16.
宋群立 《广州化工》2014,(5):36-37,58
为了缓解全球能源危机和解决环境污染问题,将农业秸秆类生物质,通过微生物发酵将它们转化为能源及高附加值的化学品,具有重要意义。介绍农业秸秆类生物质的结构成分;综合评述物理和化学预处理方法;重点介绍由农业秸秆类生物质生产乙醇、丁醇的研究现状。指出农业秸秆发酵制取生物燃料工业化进程的关键所在。  相似文献   

17.
表面活性剂耦合离子液体对稻秆酶解糖化的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
酶解糖化是木质纤维素材料制备生物质乙醇的关键环节,因此提高稻秆等木质纤维素材料的酶解糖化效率具有重要意义。以稻秆为原料,采用表面活性剂耦合离子液体为预处理方法,考察预处理温度、时间、表面活性剂的添加比例对稻秆酶解的影响。结果表明,预处理温度为110℃、时间为60 min、表面活性剂添加比例为1%,稻秆的酶解效果最佳,与单独离子液体处理的稻秆相比,纤维转化率可提高8%~15%。同时分别通过稻秆成分分析、FTIR、XRD、SEM等对预处理前后的稻秆结构进行表征,证实预处理后酶解效率提高的合理性。  相似文献   

18.
Grinding plant biomass may allow the lignocellulosic assembly to become more reactive/accessible by providing energy for polymer dissociation, increasing contact surface (particle size reduction) and reducing cellulose crystallinity. Moreover lignocellulosic composition varies considerably affecting biomass processability as resource for bio-based energies, composite materials and chemicals. The aims of this work were: (i) to analyse composition of wheat anatomic parts present into wheat straw, (ii) to characterize the behaviour of major components upon successive centrifugal grinding steps (2 mm-screen cutting milling followed by 4-step centrifugal grinding) and (iii) to relate particle size distribution and component concentrations into the finest sized product (0.12 mm-screen ground). The powders from successive centrifugal grindings were sieved and their chemical compositions were determined. Ground straw powders were heterogeneous according to different particle aspects: size, shapes and roughness. In general fractions with lower particle size had higher ash and protein contents whereas cellulose contents are higher in the larger fractions. Wheat straw exhibited a non homogeneous reduction behaviour when finely ground. Fraction compositions were only slightly distinct suggesting that although sieving can constitute a preliminary fractionation step, it is necessary to reduce still more the particle size to reach more effective dissociation of macromolecules assembly.  相似文献   

19.
The Organosolv pulping is a process to separate lignocellulosic biomass into its components cellulose, hemicellulose and lignin. Usually this process is catalyzed by Brønsted acids. In this work the Brønsted acid is replaced by the Lewis acid aluminum chloride. Much less aluminum chloride is needed to achieve similar pulp properties like high cellulose recovery, high hemicellulose and lignin removal. Also aluminum chloride catalyzes the degradation of xylose to the important basic chemicals furfural and lactic acid.  相似文献   

20.
段黎萍 《化工进展》2007,26(7):970-973
介绍了美国国家可再生实验室对木质纤维素生物质生产燃料乙醇的能量效率的模拟结果,并应用该模拟结果,估算了不同的原料、不同的生产工艺(如糖化发酵时间和精馏方式),各个生产单元的过程能耗。这些估算结果有助于选择较为合适的原料和生产工艺。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号