首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fouling on the heat transfer surfaces of industrial heat exchangers is an intractable problem, and several techniques have been suggested to inhibit fouling. Surface coatings are of such techniques by which the adhesion force between fouling and heat transfer surface can be reduced with low surface free energy thin films. In this article, liquid phase deposition was applied to coat titanium dioxide thin films on the red copper substrates with film thickness in micro‐ or nano‐meter scale. Coating thickness, contact angle, roughness, surface topography, and components were measured with X‐ray diffraction, contact angle analyzer, stylus roughmeter, scanning electron microscopy, and energy dispersive X‐ray spectroscopy, respectively. Surface free energy of coating layers was calculated based on the contact angle. Heat transfer and fouling characteristics in pool boiling of distilled water and calcium carbonate solution on coated surfaces were investigated. Heat transfer enhancement was observed on coated surfaces compared with untreated or polished surfaces due to the micro‐ and nano‐structured surfaces which may increase the number of nucleation sites. The nonfouling time on the coated surfaces is extended than that on the untreated or polished surfaces due to the reducing of the surface free energy of coated surfaces. Corrosion behavior of coated surfaces soaked in the corrosive media of hydrochloric acid, sodium hydroxide alkali, and sodium chloride salt solutions with high concentration at room temperature a few hours was also explored qualitatively. Anticorrosion results of the coated surfaces were obtained. The coatings resisted alkali corrosion within 7.2 × 105 s, acidic corrosion within 3.6 × 105 s and salt corrosion within 2.16 × 106 s. The present work may open a new coating route to avoid fouling deposition and corrosion on the heat transfer surfaces of industry evaporators, which is very important for energy saving in the related industries. © 2010 American Institute of Chemical Engineers AIChE J, 2011  相似文献   

2.
Microbial fouling of heat exchangers causes serious issues including increased fuel consumption, flow resistance, and maintenance cost expenditure. Composite Ni-P-nanoTiO2 coatings were prepared for inhibiting and mitigating the heat exchanger microbial fouling deposition. The surface energy components and wall adhesion work of microbial fouling medium had a significant effect on the microbial fouling deposition process. Compared with carbon steel coupons, the microbial fouling deposition on Ni-P-nanoTiO2 coatings was reduced by about 90 % and the wall adhesion work and microbial fouling deposition rate of these coatings were less. The Ni-P-nanoTiO2 coatings might not only be advantageous for controlling the initial microbial adhesion, but also effective for reducing the fouling deposition rate.  相似文献   

3.
Two model isocyanate terminated resins were synthesized by addition of perfluorocopolyether oligomers (n ca. 1 000) with cyclic polyisocyanurates of hexamethylene diisocyanate (HDI) and isophorone diisocyanate (IPDI). The resins were characterized by chemical titration, gel permeation chromatography, FT‐IR spectroscopy, and viscosity. The two resins, and some blends of them, were crosslinked through urea bond formation by exposure to atmospheric moisture. The resulting coatings were characterized by dynamic mechanical spectroscopy (DMS), tensile properties, abrasion resistance, adhesion, atomic force microscopy (AFM) and contact angle measurements. Phase separation phenomena and mechanical properties were related to composition and thermal transitions of both hard and soft phase. Adhesion (pull‐off) was poor on inorganic surfaces like glass and aluminium (<1 MPa) and good on organic primers (>5 MPa). The use of organosilane adhesion promoters was successfully investigated. Surface analysis by AFM showed the formation of a chemically heterogeneous very smooth (on a nanoscale) surface. Contact angle determinations with water, diiodomethane and hexadecane were carried out. The total surface energy of coatings was calculated by the harmonic mean approximation and resulted typically low (16.0–17.5 mN/m) and unaffected by the coating bulk composition.  相似文献   

4.
Thermally and chemically durable hydrophobic oleophobic coatings, containing different ceramic particles such as SiO2, SiC, Al2O3, which can be alternative instead of Teflon, have been developed and applied on the aluminum substrates by spin‐coating method. Polyimides, which are high‐thermal resistant heteroaromatic polymers, were synthesized, and fluor oligomers were added to these polymers to obtain hydrophobic–oleophobic properties. After coating, Al surface was subjected to Taber‐abrasion, adhesion, corrosion, and thermal tests. The effects of the particle size of ceramic powders, organic matrix, and heat on the coating material were investigated. Coating material was characterized by FTIR spectrophotometer. Surface properties and thermal resistance of the coating materials were investigated by SEM and TGA analyses. After thermal curing, contact angles of these coatings with H2O and n‐hexadecane were measured. It was observed that coatings like ceramic particles are more resistant against scratch and abrasion than the other coatings. Also, they are harder than coatings, which do not include ceramic particles. It was seen that coatings, containing Fluorolink D10H, have high‐contact angles with water and n‐hexadecane. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 2386–2392, 2006  相似文献   

5.
Micrometer–nanometer hydrophobic titania–fluoroalkylsilane composite coatings were prepared on substrates based on liquid‐phase deposition. Coatings and crystallization forms were characterized with instruments of surface analyses. Experimental facilities of pool boiling were established to evaluate heat and mass transfer on coated surfaces in deionized water and saturated calcium carbonate solution. Obvious pool boiling enhancement was observed on thinner microscale–nanoscale hydrophobic titania–fluoroalkylsilane composite films at higher heat fluxes compared to that on thicker titania–fluoroalkylsilane coatings or on titania coatings and stainless steel surfaces. Lower fouling resistance was obtained on titania–fluoroalkylsilane coatings in pool boiling of saturated calcium carbonate solution and crystal form was aragonite, which was different from calcite on titania coatings. Results of inhibition of fouling and enhancement of heat transfer on titania–fluoroalkylsilane coatings were contributed to special surface microscale–nanoscale structure and material wettability. Asymptotic model was used to fit experimental data of fouling resistance, and reasonable agreement was obtained. © 2013 American Institute of Chemical Engineers AIChE J, 59: 2662–2678, 2013  相似文献   

6.
An experimental study has been carried out to evaluate the drag characteristics of different self-polishing co-polymers (SPC) (tin based and tin-free) and a silicone foul release (FR) coating. Drag measurements have been performed on a smooth aluminum cylinder connected to a rotor device. Various coatings on cylinders were examined and differential length technique was also used to avoid the end effects during rotation. Surface energy of the coated samples was determined using static contact angle measurement. Characteristic roughness measurements of the coated surfaces were evaluated with atomic force microscopy (AFM) technique.

Drag measurements showed that the frictional resistance of the FR coated cylinders was lower than that of SPC coated samples.

Contact angle results showed that the critical surface tension and its polar component for silicone FR coating are less than SPC coatings. This prevents firm adhesion of fouling organisms on underwater hulls.

AFM studies revealed a lower surface roughness for silicone FR coating as compared to SPC coatings. Also, its surface texture is considerably different from SPC coatings.

It can be concluded that the drag characteristics of a surface are affected by its free energy and roughness parameters.  相似文献   


7.
We fabricated novel superhydrophobic coatings based on SiO2 nanoparticles combined with NH2‐terminated silicone (SN2) or SN2‐modified polyurethane (SN2‐prePU) by alternately spin‐coating them onto glass slides. The final fabricated surface contained SN2/SiO2 or SN2‐prePU/SiO2 bilayers. The conditions of spin‐coating method were also explored. SN2‐prePU with different SN2/prePU molar ratios were synthesized to study the influence of SN2 ratio on the water contact angles of ultimate spin‐coated surfaces. The surface was found to be tunable from hydrophobic to superhydrophobic by choosing SN2‐prePU with different SN2/prePU molar ratios or SN2 content. Water droplets easily rolled off on these superhydrophobic surfaces. Surfaces coated with SN2/SiO2 bilayers showed better transparency, whereas surfaces coated with SN2‐prePU(2 : 1)/SiO2 bilayers exhibited better durability. Droplets of varied pH were prepared to test the anti‐wettability of the coatings. Results showed that the as‐coated surfaces had stable superhydrophobicity to droplets with pH values ranging from 1 to 14. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41500.  相似文献   

8.
A series of the copolymer, poly(styrene‐random‐glycidyl methacrylate) (P(St‐r‐GMA)), is synthesized by free radical polymerization, and characterized by 1H NMR spectroscopy and gel permeation chromatography. The various substrates are then modified by P(St‐r‐GMA) under ultraviolet (UV) irradiation. Subsequently, the poly(2‐methyl‐2‐oxazoline) (PMOXA) based coatings are prepared by anchoring amino‐terminated PMOXA onto the P(St‐r‐GMA) modified surfaces through the reaction between the amino group of PMOXA and epoxy group of P(St‐r‐GMA). The results of ellipsometry, X‐ray photoelectron spectroscopy, atomic force microscopy, and water contact angle reveal that PMOXA‐based coatings can be prepared successfully on the substrates through UV‐crosslinked P(St‐r‐GMA) as anchoring coatings. Besides, the PMOXA‐based coatings display not only a superior antifouling property but long‐term stability as well. Furthermore, the location of the coating formed on the substrate can be well controlled through selecting the site of UV irradiation, which can be utilized for the selectivity of protein adsorption (or resistance) on special devices.  相似文献   

9.
BACKGROUND: A novel procedure that involved regeneration and recycling of ammonia and sulfuric acid from monosodium glutamate isoelectric supernatant with bipolar membrane electrodialysis (BMED) was proposed. As the performance of the membranes deteriorated during the batch runs, fouling of the cation‐exchange membrane (CEM) in contact with the base cell was studied. RESULTS: During ten consecutive batches of BMED, some operating parameters deteriorated gradually. Using scanning electron microscopy observations, fouling deposits were found on the CEM surface on the base cell side. Using Fourier transform infrared spectroscopy and reversed‐phase high‐performance liquid chromatography (RP‐HPLC), the organic fouling fraction of the CEM foulants was found to contain eight amino acids. Using X‐ray energy‐dispersive analysis, the mineral fouling fraction was shown to be mainly O and Ca elements, and a little Mg. Using X‐ray diffraction, the inorganic foulant was identified as CaCO3, mainly in the form of calcite and a little aragonite. CONCLUSION: The CEM was subject to membrane fouling consisting of an organic fouling fraction and a mineral fraction. The organic fraction occurred as ions with some positive charges from the isoelectric supernatant and probably existed in the form of amino acids or their peptides. The mineral fraction was mainly CaCO3 calcite and aragonite, and probably a little amorphous Ca and Mg hydroxides. Copyright © 2011 Society of Chemical Industry  相似文献   

10.
Membrane fouling is still a crucial problem, especially in applications for water treatment. When fouling takes place on membrane surfaces, it causes flux decline, leading to an increase in production cost due to increased energy demand. The selection of the right membrane material and a special treatment of the membrane are required to avoid membrane fouling. This article reports the fouling resistance of a poly(ether sulfone) (PES) hollow‐fiber membrane modified with hydrophilic surfactant Tetronic 1307. Experiments on several methods of fouling were carried out to investigate the effect of the addition of nonionic surfactant Tetronic 1307 on membrane fouling. The effectiveness of a chemical agent [sodium hypochlorite (NaClO)] in the reduction of bovine serum albumin (BSA) deposition on the membrane surface was also evaluated. Permeation results showed that the fouling of a PES blend membrane with Tetronic 1307 was lower than that of the original PES membrane in the case of BSA filtration. A treatment with a 100 ppm NaClO solution was capable of removing BSA cake formation and effective at improving the relative permeability. The permeability of a PES blend membrane with Tetronic 1307 was almost 2 times higher than the original permeability when the membrane was treated with a 100 ppm NaClO solution because both BSA and Tetronic 1307 could be decomposed. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

11.
Three bio‐based thiols were synthesized via the thermal thiol‐ene reactions between sucrose soya ester (SSE) and multifunctional thiols; then, thiourethane coatings were produced from these thiols and their coating properties were studied. A series of high bio‐renewable content thiol oligomers were synthesized according to the previously reported thermal thiol‐ene reaction. Fourier transform infrared spectra (FTIR) confirmed the complete consumption of the double bonds in SSE, and gel permeation chromatography confirmed the formation of high‐molecular‐weight oligomers. The viscosity of these oligomers remained low due to their compact and branched structures. Thermoset thiourethane coatings were prepared from these thiol oligomers and polyisocyanate trimer resins with dibutyltin diacetate as the catalyst. FTIR spectra confirmed the formation of the thiourethane group. However, coatings based on isophorone diisocyanate (IPDI) polyisocyanate resin showed a lower degree of cure because of the decreased resin mobility due to the rigid cyclohexane ring. Generally, all the coatings showed good adhesion to aluminum panels, and had high gloss. However, they exhibited low tensile strength, modulus and chemical resistance due to the flexibility of the fatty acid chain. Coatings based on more rigid IPDI‐based polyisocyanate showed higher Tg, hardness and direct impact resistance compared with the hexamethylene‐diisocyanate (HDI) based polyisocyanate counterparts. Thermogravimetric analysis results showed that coatings based on mercaptanized soybean oil have better thermal stability than those from di‐pentene dimercaptan or glycol di‐3‐mercaptopropionate. Two Tg values were found by both differential scanning calorimetry and dynamic mechanical thermal analysis of thiourethanes from HDI‐based polyisocyanate and di‐pentene dimercaptan or glycol di‐3‐mercaptopropionate based oligomers due to phase separation resulting from the poor compatibility between HDI‐based polyisocyanate and the respective oligomers. Copyright © 2011 Society of Chemical Industry  相似文献   

12.
The influence of various interface forces on membrane fouling during reverse‐osmosis (RO) filtration of organic solutions is investigated. Some monoaromatic compounds are used as model foulants. Isothermal data demonstrate that the adsorption of aromatic compounds on the membrane surface fits the Freundlich model better than the Langmuir model. Kinetics data are better correlated with the pseudo‐second‐order model than the pseudo‐first‐order one. The affinity of monoaromatic compounds to the RO membrane is evaluated. Statistical analysis of results indicates that the initial fouling rate is dominated by the electrostatic attraction and the hydrophobic force while irreversible fouling is mainly controlled by the formation of a hydrogen bond between the membrane surface and organic compounds.  相似文献   

13.
Polyester‐based polyurethane/nano‐silica composites were obtained via in situ polymerization and investigated by Fourier‐transform infrared spectroscopy (FTIR), or FTIR coupled with attenuated total reflectance (FTIR‐ATR), Transmission electron microscopy (TEM), atomic force microscopy (AFM), an Instron testing machine, dynamic mechanical analysis (DMA) and ultraviolet‐visible spectrophotometry (UV‐vis). FTIR analysis showed that in situ polymerization provoked some chemical reactions between polyester molecules and nano‐silica particles. FTIR‐ATR, TEM and AFM analyses showed that both surface and interface contained nano‐silica particles. Instron testing and DMA data showed that introducing nano‐silica particles into polyurethane enhanced the hardness, glass temperature and adhesion strength of polyurethane to the substrate, but also increased the resin viscosity. UV‐vis spectrophotometry showed that nano‐silica obtained by the fumed method did not shield UV radiation in polyurethane films. Copyright © 2003 Society of Chemical Industry  相似文献   

14.
不同涂层材料表面CaCO_3污垢特性的研究   总被引:1,自引:0,他引:1  
张仲彬  徐志明  张明玉 《化工机械》2011,38(2):160-162,179
采用对比实验的方法,通过对ECTFE、FEP、PTFE和PFA4 4种涂层材料表面的粗糙度、接触角、表面能测量和计算,考察了这些表面特性参数对CaCO3污垢形成的影响。实验结果表明,材料表面特性对污垢形成有较大影响,材料的表面能越低,污垢沉积量越小,而表面的粗糙度、接触角对CaCO3污垢形成的影响还未发现明显的规律。  相似文献   

15.
Fouling deposition and localized corrosion on the heat‐transfer surfaces of the stainless steel equipments often simultaneously exist, which can introduce additional thermal resistance to heat‐transfer and damage heat‐transfer surfaces. It is a good anticorrosion way to coat a barrier layer of certain materials on the metal surface. In this article, the TiO2 coatings with nanoscale thicknesses were obtained by liquid‐phase deposition method on the substrates of AISI304 stainless steel (ASS). The coating thickness, surface roughness, surface morphology, crystal phase, and chemical element were characterized with the film thickness measuring instrument, roughmeter, atomic force microscopy, field emission scanning electron microscopy, X‐ray diffraction, and energy‐dispersive X‐ray spectroscopy analyzer, respectively. Corrosion behavior of the TiO2 coatings was evaluated by potentiodynamic polarization, cyclic voltammograms scanning, and electrochemical impedance spectroscopy tests with the mixed corrosion solution composed of 3.5 wt. % NaCl and 0.05 M NaOH. It is shown that the TiO2 coating is composed of the nanoparticles with smooth, crack‐free, dense, and uniform surface topography; the roughness of coating surface increases slightly compared with that of the polished ASS substrate. The anatase‐phase TiO2 coatings are obtained when sintering temperature being varied from 573.15 to 923.15 K and exhibit better anticorrosion behavior compared with ASS surfaces. The corrosion current density decreases and the polarization resistance increases with the increase of the coating thickness. The corrosion resistance of the TiO2 coatings deteriorates with the increase of the corrosion time. The capacitance and the resistance of the corrosion product layer between the interface of the ASS substrate and the TiO2 coating are found after the corrosion time of 240 h. A corrosion model was introduced, and a possible new explanation on the anticorrosion mechanisms of the TiO2 coating was also analyzed. The corrosion mechanism of the TiO2 coating might comply with the multistage corrosion process. © 2011 American Institute of Chemical Engineers AIChE J, 58: 1907–1920, 2012  相似文献   

16.
BACKGROUND: Silicone elastomers have outstanding material properties including good thermal stability, low electrical conductivity, biocompatibility and resilient physical and chemical properties. These elastomers, however, exhibit relatively poor adhesion to stainless steel, and the use of a nanometre thick plasma‐polymerised primer layer as a means of enhancing this adhesion was investigated in this study. The primer coatings studied consisted of polyhydrogenmethylsiloxane (PHMS), tetraethyl orthosilicate (TEOS) and mixtures of these two liquid precursors. RESULTS: The plasma‐polymerised primer coatings were deposited onto stainless steel substrates using a PlasmaStream? atmospheric pressure plasma jet system. Deposited coatings were examined using ellipsometry, contact angle measurements, optical profilometry, Fourier transform infrared spectroscopy, X‐ray photoelectron spectroscopy and scanning electron microscopy. The adhesion of silicone elastomers bonded to the primed and bare stainless steel surfaces was assessed using 45° adhesion strength measurements. Elastomer adhesion was correlated with surface energy, thickness and roughness. CONCLUSION: An up to 15‐fold increase in adhesive fracture energy was observed for silicone elastomers bonded to the primed versus untreated stainless steel. The highest adhesion was observed for a coating deposited from a PHMS‐to‐TEOS precursor molar ratio of 3 to 1. Copyright © 2009 Society of Chemical Industry  相似文献   

17.
An experimental study has been carried out to evaluate the drag characteristics of different self-polishing co-polymers (SPC) (tin based and tin-free) and a silicone foul release (FR) coating. Drag measurements have been performed on a smooth aluminum cylinder connected to a rotor device. Various coatings on cylinders were examined and differential length technique was also used to avoid the end effects during rotation. Surface energy of the coated samples was determined using static contact angle measurement. Characteristic roughness measurements of the coated surfaces were evaluated with atomic force microscopy (AFM) technique.Drag measurements showed that the frictional resistance of the FR coated cylinders was lower than that of SPC coated samples.Contact angle results showed that the critical surface tension and its polar component for silicone FR coating are less than SPC coatings. This prevents firm adhesion of fouling organisms on underwater hulls.AFM studies revealed a lower surface roughness for silicone FR coating as compared to SPC coatings. Also, its surface texture is considerably different from SPC coatings.It can be concluded that the drag characteristics of a surface are affected by its free energy and roughness parameters.  相似文献   

18.
王景涛  宋凡福  徐志明  贾玉婷 《化工学报》1951,73(10):4594-4602
为探究Ni-P-PTFE复合镀层对颗粒污垢沉积特性的影响,利用化学镀工艺在碳钢表面制备Ni-P-PTFE复合镀层,以TiO2纳米颗粒为研究对象,通过实验和理论分析的方式研究了不同表面能(PTFE浓度)下Ni-P-PTFE复合镀层在TiO2悬浮液中的颗粒污垢沉积特性。结果表明:相比于碳钢试样,Ni-P-PTFE复合镀层对于TiO2颗粒沉积具有较好的抑制效果。随着PTFE浓度的增加,复合镀层的表面能降低,污垢沉积量呈下降趋势,在表面能为26.8 mJ/m2(PTFE=12 ml/L)时,TiO2颗粒污垢在Ni-P-PTFE复合镀层的沉积量最小。实验结果与应用扩展的DLVO理论计算出的最佳表面能结果相一致,也为针对不同类型颗粒在换热表面的沉积的抑垢提供了指导施镀的依据。  相似文献   

19.
王景涛  宋凡福  徐志明  贾玉婷 《化工学报》2022,73(10):4594-4602
为探究Ni-P-PTFE复合镀层对颗粒污垢沉积特性的影响,利用化学镀工艺在碳钢表面制备Ni-P-PTFE复合镀层,以TiO2纳米颗粒为研究对象,通过实验和理论分析的方式研究了不同表面能(PTFE浓度)下Ni-P-PTFE复合镀层在TiO2悬浮液中的颗粒污垢沉积特性。结果表明:相比于碳钢试样,Ni-P-PTFE复合镀层对于TiO2颗粒沉积具有较好的抑制效果。随着PTFE浓度的增加,复合镀层的表面能降低,污垢沉积量呈下降趋势,在表面能为26.8 mJ/m2(PTFE=12 ml/L)时,TiO2颗粒污垢在Ni-P-PTFE复合镀层的沉积量最小。实验结果与应用扩展的DLVO理论计算出的最佳表面能结果相一致,也为针对不同类型颗粒在换热表面的沉积的抑垢提供了指导施镀的依据。  相似文献   

20.
In the research presented here, we explore the use of a low‐energy plasma to deposit thin silicone polymer films using tetramethyldisiloxane (TMDSO) (H(CH3)2? Si? O? Si? (CH3)2H) on the surface of an ethylene propylene diene elastomeric terpolymer (EPDM) in order to enhance the surface hydrophobicity, lower the surface energy and improve the degradation/wear characteristics. The processing conditions were varied over a wide range of treatment times and discharge powers to control the physical characteristics, thickness, morphology and chemical structure of the plasma polymer films. Scanning electron microscopy (SEM) shows that pore‐free homogeneous plasma polymer thin films of granular microstructure composed of small grains are formed and that the morphology of the granular structure depends on the plasma processing conditions, such as plasma power and time of deposition. The thicknesses of the coatings were determined using SEM, which confirmed that the thicknesses of the deposited plasma‐polymer films could be precisely controlled by the plasma parameters. The kinetics of plasma‐polymer film deposition were also evaluated. Contact angle measurements of different solvent droplets on the coatings were used to calculate the surface energies of the coatings. These coatings appeared to be hydrophobic and had low surface energies. X‐ray photoelectron spectroscopy (XPS) and photoacoustic Fourier‐transform infrared (PA‐FT‐IR) spectroscopy were used to investigate the detailed chemical structures of the deposited films. The optimum plasma processing conditions to achieve the desired thin plasma polymer coatings are discussed in the light of the chemistry that takes place at the interfaces. Copyright © 2004 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号