首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 36 毫秒
1.
In this paper the effects of surface energy and surface roughness on the deposition of calcium sulphate during convective and subcooled flow boiling heat transfer to aqueous CaSO4 solutions are studied. The surfaces of several test heaters have been treated by Ion Beam Implantation, Unbalanced Magnetron Sputtering, Mixed Sputtering and Plasma Arc Deposition to reduce surface energy. One heater was electropolished to reduce surface roughness and one heater was etched by an electrochemical method to increase surface roughness. Fouling runs with these heaters, and with an untreated surface as control, were carried out at different heat fluxes, flow velocities and salt concentrations. The results show that heat transfer surfaces with low surface energy experienced significantly reduced fouling, while electropolishing did not have a notable beneficial effect. The combined effect of reduced surface energy and flow velocity on fouling reduction is considerably stronger than previously reported for pool boiling.  相似文献   

2.
Micrometer–nanometer hydrophobic titania–fluoroalkylsilane composite coatings were prepared on substrates based on liquid‐phase deposition. Coatings and crystallization forms were characterized with instruments of surface analyses. Experimental facilities of pool boiling were established to evaluate heat and mass transfer on coated surfaces in deionized water and saturated calcium carbonate solution. Obvious pool boiling enhancement was observed on thinner microscale–nanoscale hydrophobic titania–fluoroalkylsilane composite films at higher heat fluxes compared to that on thicker titania–fluoroalkylsilane coatings or on titania coatings and stainless steel surfaces. Lower fouling resistance was obtained on titania–fluoroalkylsilane coatings in pool boiling of saturated calcium carbonate solution and crystal form was aragonite, which was different from calcite on titania coatings. Results of inhibition of fouling and enhancement of heat transfer on titania–fluoroalkylsilane coatings were contributed to special surface microscale–nanoscale structure and material wettability. Asymptotic model was used to fit experimental data of fouling resistance, and reasonable agreement was obtained. © 2013 American Institute of Chemical Engineers AIChE J, 59: 2662–2678, 2013  相似文献   

3.
In order to study the effect of heat flux and inlet temperature on the fouling characteristics of nanoparticles, and to further reveal the fouling mechanism for insights into proper operating conditions, γ-Al_2O_3/water suspensions were chosen as the subject of this research. The particulate fouling characteristics of γ-Al_2O_3/water suspensions on the surface of stainless steel have been experimentally studied by varying the heat flux and the inlet temperature under single-phase flow and subcooled-flow boiling conditions. The results show that in the condition of single-phase flow, the asymptotic value of fouling resistance decreases with increasing of heat flux and inlet temperature. The asymptotic value of fouling resistance under single-phase flow is much higher than for the subcooled-flow boiling condition. The effect of heat flux on the fouling resistance under the two flow states has an inverse relationship, and there exists a minimum value of fouling resistance between these two states. For subcooled-flow boiling, the asymptotic value of fouling resistance increases with increasing heat flux, whereas the effect on fouling resistance by the inlet temperature is negligible.  相似文献   

4.
Fouling deposition and localized corrosion on the heat‐transfer surfaces of the stainless steel equipments often simultaneously exist, which can introduce additional thermal resistance to heat‐transfer and damage heat‐transfer surfaces. It is a good anticorrosion way to coat a barrier layer of certain materials on the metal surface. In this article, the TiO2 coatings with nanoscale thicknesses were obtained by liquid‐phase deposition method on the substrates of AISI304 stainless steel (ASS). The coating thickness, surface roughness, surface morphology, crystal phase, and chemical element were characterized with the film thickness measuring instrument, roughmeter, atomic force microscopy, field emission scanning electron microscopy, X‐ray diffraction, and energy‐dispersive X‐ray spectroscopy analyzer, respectively. Corrosion behavior of the TiO2 coatings was evaluated by potentiodynamic polarization, cyclic voltammograms scanning, and electrochemical impedance spectroscopy tests with the mixed corrosion solution composed of 3.5 wt. % NaCl and 0.05 M NaOH. It is shown that the TiO2 coating is composed of the nanoparticles with smooth, crack‐free, dense, and uniform surface topography; the roughness of coating surface increases slightly compared with that of the polished ASS substrate. The anatase‐phase TiO2 coatings are obtained when sintering temperature being varied from 573.15 to 923.15 K and exhibit better anticorrosion behavior compared with ASS surfaces. The corrosion current density decreases and the polarization resistance increases with the increase of the coating thickness. The corrosion resistance of the TiO2 coatings deteriorates with the increase of the corrosion time. The capacitance and the resistance of the corrosion product layer between the interface of the ASS substrate and the TiO2 coating are found after the corrosion time of 240 h. A corrosion model was introduced, and a possible new explanation on the anticorrosion mechanisms of the TiO2 coating was also analyzed. The corrosion mechanism of the TiO2 coating might comply with the multistage corrosion process. © 2011 American Institute of Chemical Engineers AIChE J, 58: 1907–1920, 2012  相似文献   

5.
Superhydrophobic surfaces were generated on stainless steel SS 304 substrates, using a combination of physical as well as chemical modification of the surface and tested for use in biomedical applications. Nanosecond pulsed laser was used for physical modification, i.e. creating nanoscaled roughness on the substrates. An additional chemical modification was performed using fluorosilane-based sol-gel nanocomposite coatings to further improve the hydrophobicity. Presently, the key challenge that such surfaces face, is to possess a substantial durability. In this study, a surface activation technique such as plasma pre-treatment was adopted to improve the adhesion of coatings on the laser treated substrates. The coatings deposited using dip coating technique were cured at 150 °C. The surface morphology and the roughness of the processed substrates and the coated samples were characterized using Atomic Force Microscope and Scanning Electron Microscope. The wettability of the surface was monitored and evaluated throughout the study using water contact angle measurements. Weathering tests and scratch resistance measurements using a crockmeter were carried out to evaluate the durability, which revealed that the adhesion could be improved with plasma treatment of the laser textured substrates, prior to coating deposition. Maximum anti-bacterial activity of up to 90% towards the bacterial species Escherichia coli was found on the substrates coated with the fluorosilane-based superhydrophobic coatings for an exposure time of 30 min, without any addition of external anti-bacterial agents. Thus, the preliminary results obtained from the present investigation were found to be promising and were indicative of use of these surfaces for biomedical applications.  相似文献   

6.
刘阿龙  徐宏  孙岩  许佳寅  张莉  王学生 《化工学报》2008,59(10):2448-2454
在恒热流密度情况下,以CaSO4溶液为介质,研究了烧结型多孔管在池沸腾过程中的污垢特性。结果表明:与光滑管相比,多孔管在不同浓度的CaSO4溶液中都具有阻垢特性,浓度增大污垢热阻的渐近值增大,但当浓度增大到一定程度后,污垢曲线由渐近线型过渡到直线型。通过对两种换热管表面和污垢表面的扫描电镜(SEM)分析,对多孔管的阻垢机理进行了解释。发现多孔表面的CaSO4晶体形状为六棱柱体,晶粒更加细小,约为光滑表面晶粒尺寸的1/2.5,且污垢层更薄。  相似文献   

7.
Time‐dependent effects on the apparent roughness and surface free energy of different polymeric surfaces and stainless steel were studied during the biofouling process for Escherichia coli K12. The surface roughness increases during primary adhesion of E. coli on the surfaces and is later reduced as the surface between scattered bacteria is completely covered, forming a uniform biofilm. During the fouling process, the polar fraction of the surface free energy significantly increased, whereas the dispersive fraction decreased for all substrates. The attachment of E. coli and subsequent bacterial production of extracellular polymeric substances increased the polarity of the initially nonpolar polymeric surfaces to increase wettability.  相似文献   

8.
Fouling on the heat transfer surfaces of industrial heat exchangers is an intractable problem, and several techniques have been suggested to inhibit fouling. Surface coatings are of such techniques by which the adhesion force between fouling and heat transfer surface can be reduced with low surface free energy thin films. In this article, liquid phase deposition was applied to coat titanium dioxide thin films on the red copper substrates with film thickness in micro‐ or nano‐meter scale. Coating thickness, contact angle, roughness, surface topography, and components were measured with X‐ray diffraction, contact angle analyzer, stylus roughmeter, scanning electron microscopy, and energy dispersive X‐ray spectroscopy, respectively. Surface free energy of coating layers was calculated based on the contact angle. Heat transfer and fouling characteristics in pool boiling of distilled water and calcium carbonate solution on coated surfaces were investigated. Heat transfer enhancement was observed on coated surfaces compared with untreated or polished surfaces due to the micro‐ and nano‐structured surfaces which may increase the number of nucleation sites. The nonfouling time on the coated surfaces is extended than that on the untreated or polished surfaces due to the reducing of the surface free energy of coated surfaces. Corrosion behavior of coated surfaces soaked in the corrosive media of hydrochloric acid, sodium hydroxide alkali, and sodium chloride salt solutions with high concentration at room temperature a few hours was also explored qualitatively. Anticorrosion results of the coated surfaces were obtained. The coatings resisted alkali corrosion within 7.2 × 105 s, acidic corrosion within 3.6 × 105 s and salt corrosion within 2.16 × 106 s. The present work may open a new coating route to avoid fouling deposition and corrosion on the heat transfer surfaces of industry evaporators, which is very important for energy saving in the related industries. © 2010 American Institute of Chemical Engineers AIChE J, 2011  相似文献   

9.
The scratch test was applied to determine the adhesion strength of radio-frequency (RF) sputtered SiO2 films to Ti, stainless steel, Ni and Inconel substrates. The effect of substrate ion bombardment etching was investigated by using a mean critical load derived from a Weibull-like statistical analysis. It was found that the mean critical load values obtained on substrates etched by ion bombardment for a sufficiently long time were two to three times those obtained on mechanically polished substrates. Scratch tracks were observed by scanning electron microscopy and some X-ray spectra were measured after the electron beam of the scanning electron microscope was focused inside the scratch channel. Depth composition profiles were also recorded by Auger electron spectroscopy. No important presence of contamination was observed in the interfacial domain even after mechanical polishing, but the width of this interfacial domain was higher after ion bombardment than after mechanical polishing. This difference in width could result from the formation of microcavities and vacancies at the substrate surface during ion bombardment. In such a case, the significant adhesion improvement should principally occur from an enhanced interlocking of the coating to its substrate.  相似文献   

10.
《Ceramics International》2023,49(12):19786-19797
A stable superhydrophobic FAS-ZrO2 (FZr-ESS) surface was created by chemically etching and modifying a 304 stainless steel substrate. The effect of etching parameters such as time and temperature on the surface wetting properties was studied and optimized. The etched steel surface exhibited a honeycomb-like microstructure that, coupled with the low surface energy of the fluorinated ZrO2 nanoparticles, produced a FZr-ESS surface with a surface contact angle (CA) of 165.9° and a sliding angle (SA) of 1.7°. The presence of highly stable functionalized ZrO2 conjugated to the steel matrix contributed to the surface's outstanding mechanical stability, as confirmed by tape peeling and sandpaper abrasion tests. Furthermore, the FZr-ESS surface demonstrated exceptional chemical stability under a variety of pH conditions due to its excellent water repellency. An electrochemical test showed that the resulting surface was highly resistant to corrosion, with the corrosion current density reduced by nearly two orders of magnitude compared to bare stainless steel. The superhydrophobic FZr-ESS surface also displayed excellent long-term stability, wetting diversity, and self-cleaning behavior, making it highly versatile for a range of applications.  相似文献   

11.
以不锈钢网为基底,通过化学刻蚀法制备微米级粗糙表面,通过一步浸泡法将st9ber法制得的疏水亲油纳米Si O2颗粒沉积到粗糙的不锈钢网表面,制备了具有微纳二级粗糙结构的超疏水超亲油不锈钢网。利用扫描电子显微镜(SEM)、傅里叶变换红外光谱仪(FT-IR)和接触角测量仪(CA)表征了超疏水超亲油不锈钢网的表面形貌、化学组成和润湿性能,并将其用于油水分离过程中。结果表明,疏水亲油纳米Si O2颗粒成功的沉积到不锈钢网表面;水滴在超疏水超亲油不锈钢网上的接触角最大为151°,煤油的接触角为0°;制备的超疏水超亲油不锈钢网不仅能高效的分离不同种类油和水的混合物,还能高效的分离油和腐蚀性液体(强酸或强碱水溶液)的混合物,其耐腐蚀特性可满足复杂环境下的油水分离要求。  相似文献   

12.
This contribution addresses apparent negative fouling resistances for crystallization fouling. Two effects contribute to this phenomenon; surface roughness enhances heat transfer in the roughness controlled phase. In the crystal growth phase, surface roughness as well as the constriction of flow cross section due to the fouling layer build-up is taken into consideration. Fouling experiments were carried out in a double pipe heat exchanger with a supersaturated aqueous CaSO4 solution at a Reynolds number of 17,500 corresponding to a flow velocity of 0.65 m s−1. The measured pressure drop between inlet and outlet allowed the calculation of the integral friction factor for the current surface roughness. With the given friction factor it was possible to estimate the actual heat transfer coefficient of the inner tube. Accounting for the increase in heat transfer caused by surface roughness in the roughness controlled phase, the fouling resistance was recalculated. In the subsequent growth phase flow acceleration due to constriction effects is considered in addition to the roughness effect. Overall the integral fouling resistance and consequently the deposit thickness are underestimated by a factor of up to 2.5 when simply using heat balance. With the proposed approach apparent negative fouling resistances can be eliminated quantitatively.  相似文献   

13.
Fouling on food contact surfaces (e.g. heat exchangers, work tables, conveyors) during food processing has a significant impact on operating efficiency and can promote biofilm development. Processing raw milk on plate heat exchangers results in significant fouling of proteins as well as minerals, and is exacerbated by the wall heating effect. The surface of 316L stainless steel heat exchanger plates was modified to resist fouling during food processing. An electroless nickel plating process was used to co-deposit fluorinated nanoparticles onto 316L stainless steel. The ability to resist fouling was demonstrated on a pilot plant scale plate heat exchanger. The fluorinated nanoparticle modified steel reduced surface energy from 41.4 to 24.7 mN/m, and reduced foulant accumulation by 97%. The anti-fouling coating was demonstrated to improve heat transfer efficiency. Repeatability studies were performed and confirmed that the EN-PTFE surface coating maintained its anti-fouling properties through 10 independent processing runs. Co-deposition of fluorinated particles during electroless nickel plating represents an effective and commercially scalable method to prepare anti-fouling coatings on stainless steel.  相似文献   

14.
Stainless steel bipolar plates (BPPs) are the preferred choice for proton exchange membrane fuel cells (PEMFCs); however, a surface coating is needed to minimize contact resistance and corrosion. In this paper, Ni–Mo and Ni–Mo–P coatings were electroplated on stainless steel BPPs and investigated by XRD, SEM/EDX, AFM and contact angle measurements. The performance of the BPPs was studied by corrosion and conduction tests and by measuring their interfacial contact resistances (ICRs) ex situ in a PEMFC set‐up at varying clamping pressure, applied current and temperature. The results revealed that the applied coatings significantly reduce the ICR and corrosion rate of stainless steel BPP. All the coatings presented stable performance and the coatings electroplated at 100 mA cm−2 showed even lower ICR than graphite. The excellent properties of the coatings compared to native oxide film of the bare stainless steel are due to their higher contact angle, crystallinity and roughness, improving hydrophobicity and electrical conductivity. Hence, the electroplated coatings investigated in this study have promising properties for stainless steel BPPs and are potentially good alternatives for the graphite BPP in PEMFC.  相似文献   

15.
In this paper, superhydrophobic ceramic coatings were successfully prepared on stainless steel substrates (S304) by sol–gel method, and the effects of pore content and pH conditions on the corrosion resistance of hydrophobic ceramic coatings were studied. As the porosity increases, the contact angle of the coating increases. Among them, the contact angles of the coatings with 15% and 20% porosity in different pH solutions are all greater than 150°, achieving superhydrophobic surfaces. The contact angle results before and after corrosion show that the solution with a higher pH has a greater damage to the hydrophobicity of the coating. The corrosion resistance of the coatings was evaluated comparatively from polarization curves and electrochemical impedance spectroscopy. As the hydrophobicity improves, the corrosion resistance of the hydrophobic ceramic coating is enhanced. The impedance moduli at .01 Hz of the coating are 1.04 × 103 times (pH 4), .13 × 103 times (pH 7), and .74 × 103 times (pH 10) of the bare steel, respectively. With the increase of pH, the corrosion resistance of hydrophobic ceramic coatings decreases, because OH in the corrosion solution is more easily adsorbed on the surface of the coating, thereby destroying the long hydrophobic chains.  相似文献   

16.
The adhesion strength and water resistance of stainless steel and adhesive resin composites determine the long‐term performance of wires and cables; however, adhesion at stainless steel interfaces is difficult. Herein, we prepared ethylene acrylic acid/linear low‐density polyethylene (EAA/LLDPE) blends with good mechanical and adhesive properties. Silane was anchored to the surface of stainless steel. The effects of silane functionalization on the adhesion surface were investigated by X‐ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. The reaction mechanism between the stainless steel, silane, and EAA/LLDPE revealed adhesion was optimized when a 3:7 volume ratio of 3‐methacryloxypropyltrimethoxysilane (MEMO): 3‐aminopropyltrimethoxysilane (A‐1110) was used to modify the stainless steel substrate. SEM images of EAA/LLDPE film peel surfaces found the silane‐treated stainless steel substrates produced rough surfaces with a uniform void indicating the silane treatment enhanced the stainless steel and EAA/LLDPE film interaction. The stainless steel and EAA/LLDPE film adhesion and water resistance improved and the peel strength after water resistance testing at 68°C for 168 h increased from 3.18 N/cm to 9.37 N/cm compared to untreated stainless steel. Silane‐modified stainless steel and EAA/LLDPE blend film composite materials demonstrate potential for application in wires and cables used in environmental corrosion‐resistant applications. POLYM. ENG. SCI., 59:1866–1873, 2019. © 2019 Society of Plastics Engineers  相似文献   

17.
For the first time, potassium sodium niobate (KNN)‐based lead‐free piezoelectric ceramic coating with strong piezoelectric response was fabricated on stainless steel substrates by thermal spray process, after introducing NiCrAlY and yttria‐stabilized zirconia (YSZ) intermediate layers. A large effective piezoelectric coefficient (d33) of 125 pm/V was obtained with the thermal‐sprayed KNN‐based ceramic coating on the steel substrates. The mechanisms of improving the structure and enhancing the properties of the KNN‐based piezoelectric ceramic coatings by introducing the intermediate layers were analyzed. Ultrasonic transducers were designed and fabricated from the KNN‐based coatings directly formed on a steel plate structure, and the feasibility for generation and detection of ultrasonic waves for structural health monitoring using the thermal‐sprayed lead‐free piezoelectric ceramic coating was demonstrated.  相似文献   

18.
BACKGROUND: Silicone elastomers have outstanding material properties including good thermal stability, low electrical conductivity, biocompatibility and resilient physical and chemical properties. These elastomers, however, exhibit relatively poor adhesion to stainless steel, and the use of a nanometre thick plasma‐polymerised primer layer as a means of enhancing this adhesion was investigated in this study. The primer coatings studied consisted of polyhydrogenmethylsiloxane (PHMS), tetraethyl orthosilicate (TEOS) and mixtures of these two liquid precursors. RESULTS: The plasma‐polymerised primer coatings were deposited onto stainless steel substrates using a PlasmaStream? atmospheric pressure plasma jet system. Deposited coatings were examined using ellipsometry, contact angle measurements, optical profilometry, Fourier transform infrared spectroscopy, X‐ray photoelectron spectroscopy and scanning electron microscopy. The adhesion of silicone elastomers bonded to the primed and bare stainless steel surfaces was assessed using 45° adhesion strength measurements. Elastomer adhesion was correlated with surface energy, thickness and roughness. CONCLUSION: An up to 15‐fold increase in adhesive fracture energy was observed for silicone elastomers bonded to the primed versus untreated stainless steel. The highest adhesion was observed for a coating deposited from a PHMS‐to‐TEOS precursor molar ratio of 3 to 1. Copyright © 2009 Society of Chemical Industry  相似文献   

19.
The influence of steel surface pretreatment with different types of iron–phosphate coatings on the corrosion stability and adhesion characteristics of polyester coatings on steel was investigated. The phosphate coating was chemically deposited either from the simple novel plating bath, or with the addition of NaNO2, as an accelerator in the plating bath. The morphology of phosphate coatings was investigated using atomic force microscopy (AFM). The corrosion stability of polyester coatings on steel pretreated by iron–phosphate coatings was investigated by electrochemical impedance spectroscopy (EIS) in 3% NaCl solution, while “dry” and “wet” adhesion were measured by a direct pull-off standardized procedure. It was shown that greater values of pore resistance, Rp, and smaller values of coating capacitance of polyester coating, Cc, on steel pretreated with iron–phosphate coating were obtained, as compared to polyester coating on steel phosphated with accelerator, and on the bare steel. The surface roughness of phosphate coating deposited on steel from the bath without accelerator is favorable in forming stronger bonds with polyester coating. Namely, the dry and wet adhesion measurements are in accordance with EIS measurements in 3% NaCl solution, i.e. lower adhesion values were obtained for polyester coating on steel phosphated with accelerator and on the bare steel, while the iron–phosphate pretreatment from the novel bath enhanced the adhesion of polyester coating on steel.  相似文献   

20.
The adhesion strength between electroless copper and acrylonitrile-butadiene-styrene (ABS) resin can be improved significantly by an environmentally friendly etching system containing H2SO4–MnO2 colloid as a replacement for conventional chromic acid etching solutions. In this paper, the effects of the H2SO4 concentration and ultrasound-assisted treatment (UAT) on the surface roughness and adhesion strength were investigated. When the H2SO4 concentration was 11.8~12.7 M, good etching was obtained. With UAT, many uniform cavities formed on the ABS surface with the average surface roughness (R a) and maximum roughness (R max) of ABS substrates decreasing from 386 and 397 nm to 278 and 285 nm, respectively, which were much lower than that etched by CrO3–H2SO4 colloid (420 and 510 nm, respectively). The average adhesion strength increased from 1.29 to 1.39 kN/m, which was close to that obtained with chromic acid etching treatment (1.42 kN/m). The surface contact angle measurement indicated that the density of the polar groups on the ABS surface increased with increasing time of UAT. The results indicated that surface etching with UAT not only improved the uniformity of cavities, but also enhanced the oxidation rate of ABS resin, which in turn resulted in greater adhesion strength and a lower surface roughness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号