首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
There are growing concerns about increasing emissions of greenhouse gases and a looming global warming crisis. CO2 is a greenhouse gas that affects the climate of the earth. Fossil fuel consumption is the major source of anthropogenic CO2 emissions. Chemical looping combustion (CLC) has been suggested as an energy‐efficient method for the capture of carbon dioxide from combustion. A chemical‐looping combustion system consists of a fuel reactor and an air reactor. The air reactor consists of a conventional circulating fluidized bed and the fuel reactor is a bubbling fluidized bed. The basic principle involves avoiding direct contact of air and fuel during the combustion. The oxygen is transferred by the oxygen carrier from the air to the fuel. The water in combustion products can be easily removed by condensation and pure carbon dioxide is obtained without any loss of energy for separation. With the improvement of numerical methods and more advanced hardware technology, the time required to run CFD (computational fluid dynamic) codes is decreasing. Hence, multiphase CFD‐based models for dealing with complex gas‐solid hydrodynamics and chemical reactions are becoming more accessible. To date, there are no reports in the literature concerning mathematical modeling of chemical‐looping combustion using FLUENT. In this work, the reaction kinetics models of the (CaSO4 + H2) fuel reactor is developed by means of the commercial code FLUENT. The effects of particle diameter, gas flow rate and bed temperature on chemical looping combustion performance are also studied. The results show that the high bed temperature, low gas flow rate and small particle size could enhance the CLC performance.  相似文献   

2.
A fluidized bed system combining two circulating fluidized bed reactors is proposed and investigated for chemical looping combustion. Direct hydraulic communication of the two circulating fluidized bed reactors via a fluidized loop seal allows for high rates of global solids circulation and results in a stable solids distribution in the system. A 120 kW fuel power bench scale unit was designed, built, and operated. Experimental results are presented for natural gas as fuel using a nickel‐based oxygen carrier. No carbon was lost to the air reactor under any conditions operated. It is shown from fuel power variations that a turbulent/fast fluidized bed regime in the fuel reactor is advantageous. Despite the relatively low riser heights (air reactor: 4.1 m, fuel reactor: 3.0 m), high CH4 conversion and CO2 yield of up to 98% and 94%, respectively, can be reported for the material tested. © 2009 American Institute of Chemical Engineers AIChE J, 2009  相似文献   

3.
Biomass fuel is the largest renewable energy resource and the fourth largest primary energy supply in the world. Because of its complex characteristics when compared to fossil fuel, potential problems, such as combustion system stability, the corrosion of heat transfer tubes, the qualities of the ash, and the emission of pollutants, are major concerns when co-firing the biomass fuel with fossil fuel in a traditional boiler. In this study, co-firing of coal with a biomass blend, including fuel derived from densified refuse, sludge, and waste tires, were conducted in a 130 ton/h steam circulating fluidized bed co-generation boiler to investigate the feasibility of utilizing biomass as a complemental fuel in a traditional commercial coal-fired boiler. The properties of the fly ash, bottom ash, and the emission of pollutants for various fuel ratios are analyzed and discussed in this study.  相似文献   

4.
A comparison of dual fluidized bed gasification of biomass with and without selective transport of CO2 from the gasification to the combustion reactor is presented. The dual fluidized bed technology provides the necessary heat for steam gasification by circulating hot bed material that is heated in a separate fluidized bed reactor by combustion of residual biomass char. The hydrogen content in producer gas of gasifiers based on this concept is about 40 vol% (dry basis). Addition of carbonates to the bed material and adequate adjustment of operation temperatures in the reactors allow selective transport of CO2 (absorption enhanced reforming—AER concept). Thus, hydrogen contents of up to 75 vol% (dry basis) can be achieved. Experimental data from a 120 kWFuel input pilot plant as well as thermodynamic data are used to determine the mass- and energy-balances. Carbon, hydrogen, oxygen, and energy balances for both concepts are presented and discussed.  相似文献   

5.
生物质燃料具有水分、挥发分、碱金属含量较高、热值偏低的特点,适合流化床燃烧应用,但在燃烧过程中挥发出的碱金属和Cl元素在一定温度下会对流化床锅炉安全经济运行造成威胁,如Cl元素的挥发容易导致受热面腐蚀。其腐蚀类型可分为气相腐蚀、液相腐蚀和固相腐蚀,腐蚀程度主要受到燃料成分、温度的影响。本文针对生物质循环流化床锅炉受热面发生腐蚀的关键因素Cl成分,阐述了生物质循环流化床锅炉发生腐蚀现象的机理,根据工程实践,指出了实际锅炉发生腐蚀的现象及工程应对方法,并提出防止腐蚀可以在生物质燃料预处理、炉膛密相区附近增加二次风管、改变过热器受热面布置方式、加入特定成分添加剂以及受热面材质选择等方面进行突破,以期为生物质循环流化床锅炉的高可靠性运行提供指导。  相似文献   

6.
Chemical looping combustion (CLC) is a flameless two-step fuel combustion that produces a pure CO2 stream, ready for compression and sequestration. The process is composed of two interconnected fluidized bed reactors. The air reactor which is a conventional circulating fluidized bed and the fuel reactor which is a bubbling fluidized bed. The basic principle is to avoid the direct contact of air and fuel during the combustion by introducing a highly-reactive metal particle, referred to as oxygen carrier, to transport oxygen from the air to the fuel. In the process, the products from combustion are kept separated from the rest of the flue gases namely nitrogen and excess oxygen. This process eliminates the energy intensive step to separate the CO2 from nitrogen-rich flue gas that reduce the thermal efficiency.Fundamental knowledge of multiphase reactive fluid dynamic behavior of the gas-solid flow is essential for the optimization and operation of a chemical looping combustor.Our recent thorough literature review shows that multiphase CFD-based models have not been adapted to chemical looping combustion processes in the open literature. In this study, we have developed the reaction kinetics model of the fuel reactor and implemented the kinetic model into a multiphase hydrodynamic model, MFIX, developed earlier at the National Energy Technology Laboratory. Simulated fuel reactor flows revealed high weight fraction of unburned methane fuel in the flue gas along with CO2 and H2O. This behavior implies high fuel loss at the exit of the reactor and indicates the necessity to increase the residence time, say by decreasing the fuel flow rate, or to recirculate the unburned methane after condensing and removing CO2.  相似文献   

7.
A one-dimensional steady state model has been developed for the combustion reactor of a dual fluidized bed biomass steam gasification system. The combustion reactor is operated as fast fluidized bed (riser) with staged air introduction (bottom, primary and secondary air). The main fuel i.e., residual biomass char (from the gasifier), is introduced together with the circulating bed material at the bottom of the riser. The riser is divided into two zones: bottom zone (modelled according to modified two phase theory) and upper zone (modelled with core-annulus approach). The model consists of sub-model for bed hydrodynamic, conversion and conservation. Biomass char is assumed to be a homogeneous matrix of C, H and O and is modelled as partially volatile fuel. The exit gas composition and the temperature profile predicted by the model are in good agreement with the measured value.  相似文献   

8.
Fossil fuel combustion is one of the major means to meet the mounting global energy demand. However, the increasing NOx and N2O emissions arising from fossil fuel combustion process have hazardous effects. Thus, mitigating these gases is vital to attain a sustainable environment. Interestingly, oxy-fuel combustion in fluidized bed for carbon capture and minimized NOx emissions is strongly sustainable compare to the other approaches. It was assessed that NOx formation and fuel-N conversion have significant limitation under oxy-fluidized bed compared to air mode and the mechanism of NOx formation is still deficient and requires further development. In addition, this review paper discussed the potential of primary measure as low emission process with others supplementary techniques for feasible NOx reduction. The influences of combustion mode, operating parameters, and reduction techniques such as flue gas recirculation, oxygen staging, biomass co-firing, catalyst, influence of fluidized bed design and structure, decoupling combustion and their merges are respectively evaluated. Findings show that significant minimization of NOx emission can be achieved through combination of primary and secondary reduction techniques.  相似文献   

9.
白酒糟双床解耦燃烧模拟实验研究   总被引:1,自引:0,他引:1  
采用实验与Aspen Plus模拟相结合的方法,以白酒糟作为富氮高含水生物质残渣的典型代表,研究了生物质残渣双床解耦燃烧的必要性与可行性. 结果表明,高水分白酒糟在普通流化床中存在点火时间长、燃烧稳定性差及NO浓度排放高(>800 mg/m3)的缺点,而采用双床解耦燃烧可减少点火时间,提高燃烧稳定性并降低NO排放浓度50%以上. 模拟结果显示,55%含水率的白酒糟可在双床系统中实现自热燃烧. 以石英砂为床料,在500~900℃的流化床燃烧实验中证实了经工业发酵的纤维素更易燃烧,且未发现白酒糟灰的烧结现象.  相似文献   

10.
双流化床生物质气化炉研究进展   总被引:1,自引:0,他引:1  
生物质是重要的清洁可再生能源,双流化床生物质气化技术是将低品位的生物质能转化成高品位氢能的重要途径。本文阐明了双流化床气化过程的基本原理,从燃气中氢气浓度、焦油含量和装置热效率等角度,介绍了双流化床生物质气化技术的早期探索和发展现状,对目前几种典型双流化床生物质气化炉的炉型设计及相关试验研究进行了分析和总结。指出内循环双流化床气化炉结构虽然简单紧凑,但是难以避免气化室和燃烧室之间的气体串混问题;而外循环流化床通过外置返料器很好地解决了气体串混问题。分析了不同气化室优化设计方案对提升燃气品质的理论依据及其优缺点。最后对双流化床生物质气化技术的发展进行了总结和展望,指出双流化床生物质气化制氢具有非常广阔的工业化应用和发展前景。  相似文献   

11.
Fossil fuel combustion is one of the major means to meet the mounting global energy demand. However, the increasing NO_x and N_2 O emissions arising from fossil fuel combustion process have hazardous effects. Thus, mitigating these gases is vital to attain a sustainable environment. Interestingly, oxy-fuel combustion in fluidized bed for carbon capture and minimized NO_x emissions is strongly sustainable compare to the other approaches. It was assessed that NO_x formation and fuel-N conversion have significant limitation under oxy-fluidized bed compared to air mode and the mechanism of NO_x formation is still deficient and requires further development. In addition, this review paper discussed the potential of primary measure as low emission process with others supplementary techniques for feasible NO_x reduction. The influences of combustion mode, operating parameters, and reduction techniques such as flue gas recirculation, oxygen staging, biomass co-firing, catalyst, influence of fluidized bed design and structure, decoupling combustion and their merges are respectively evaluated. Findings show that significant minimization of NO_x emission can be achieved through combination of primary and secondary reduction techniques.  相似文献   

12.
This paper reviews the SO2 emission from a 0.3 m2 stainless‐steel fluidized‐bed combustor. Fine coal was premixed with fine limestone and fed pneumatically under the bed. The SO2 emission was found to depend largely on air staging ratio and bed temperature, which agrees with previous observations. The SO2 emission observed in sorbent‐free tests (reported earlier by Khan and Cibbs, 1995) was found to be proportional to the sulphur content of the fuel when limestone was added, the sulphur capture at a fixed Ca/S molar ratio was dependent on oxygen stoichiometry and bed temperature. Finely sized limestone enhanced the effectivity of the sorbent at low bed temperature and air staging ratio. During staged combustion, the combustion efficiency depended largely on primary air to coal ratio. Around 90% combustion efficiency was observed at 1 m/s fluidizing velocity which was reduced when fluidizing velocity was increased to 1.5 and 2 m/s. This reduction is due to increased elutriation of finer coal particles from the combustor.  相似文献   

13.
石油焦的燃烧特性   总被引:12,自引:2,他引:10       下载免费PDF全文
引 言高硫石油焦作为石化行业所生产的副产品 ,其含碳量高、含灰量少 ,具有较高的热值 ,用其作为一种替代燃料来发电、供热 ,不仅可以缓解我国能源短缺的矛盾 ,而且可以变废为宝 .近年来在世界上 ,越来越多的热电厂开始用石油焦特别是用含硫高的石油焦作为循环流化床燃烧锅炉的燃料来生产蒸汽发电或供热[1] .然而 ,石油焦作为一种替代燃料 ,其燃烧特性及其燃烧后所排放污染物 ,到目前为止 ,对其研究较少 ,而且均为实验室小台架试验[2~ 5] .关于热态试验尚未见报道 .循环流化床燃烧技术是一种清洁燃烧技术[6] ,它通过飞灰循环燃烧、控制床…  相似文献   

14.
不同类型燃煤工业锅炉具有各自的技术优势及应用范围,为了给用户在项目立项、选择锅炉时提供正确参考,阐述了3种主流燃煤工业锅炉的技术特点、应用现状,并着重针对循环流化床锅炉和现代煤粉工业锅炉,从燃烧组织方式和技术特点两方面进行了系统的技术对比分析。经分析认为,流态化燃烧组织是循环流化床锅炉的技术基础,浓相室燃燃烧组织是现代煤粉工业锅炉的技术基础。依托密相床炉料的巨大热容量,循环流化床锅炉定位于处理高灰劣质燃料;依托低变质高活性清洁煤粉快响应着火喷燃,现代煤粉工业锅炉定位于油(气)锅炉的备份及互换。因此,二者非取舍而是互为补充的关系。  相似文献   

15.
A new technique of achieving high temperature air was adopted by combustion in high excess air ratio in a circulating fluidized bed (CFB). Experiments on pulverized coal combustion in high temperature air from the CFB were made in a down-fired combustor with the diameter of 220 mm and the height of 3000 mm. High temperature air with lower oxygen concentrations can be achieved steadily and continuously by combustion in the circulating fluidized bed. Pulverized coal combustion in high temperature air shows a uniform temperature profile along the axis of the down-fired combustor and the combustion efficiency is 99.8%. The NOx emission is 390 mg/m3, 13% lower than the regulation for thermal power plants in China. The HCN and NH3 emissions, as well as N2O, are about zero in the exhaust.  相似文献   

16.
The characterization of volatile matter (VM) release from solid fuel particles during fluidized‐bed combustion/gasification is relevant to the assessment of the reactor performance, as devolatilization rate affects in‐bed axial fuel segregation and VM distribution across the reactor. An experimental technique for the characterization of the devolatilization rate of solid fuels in fluidized beds is proposed. It is based on the analysis of the time series of pressure measured in a bench‐scale fluidized‐bed reactor as VM is released from a batch of fuel particles. A remarkable feature of the technique is the possibility to follow fast devolatilization with excellent time‐resolution. A mathematical model of the experiment has been developed to determine the time‐resolved devolatilization rate, the devolatilization time and the volume‐based mean molecular weight of the emitted volatile compounds. Devolatilization kinetics has been characterized for different solid fuels over a broad range of particle sizes. © 2011 American Institute of Chemical Engineers AIChE J, 2012  相似文献   

17.
18.
High temperature air was adopted by combustion in high excess air ratio in a circulating fluidized bed. Experiments on pulverized coal combustion in high temperature air from the circulating fluidized bed were carried out in a down-fired combustor with the diameter of 220 mm and the height of 3000 mm. The NO emission decreases with increasing the residence time of pulverized coal in the reducing zone, and the NO emission increases with excess air ratio, furnace temperature, coal mean size and oxygen concentration in high temperature air. The results also revealed that the co-existing of air-staging combustion with high temperature air is very effective to reduce nitrogen oxide emission for pulverized coal combustion in the down-fired combustor.  相似文献   

19.
王艳  陈文义  孙姣  石海波  陈晓东 《化工进展》2012,31(8):1656-1664
生物质是重要的可再生能源,生物质气化技术在国内外得到了广泛应用。本文综述了国内外固定床、鼓泡流化床、外循环流化床、内循环流化床、双循环流化床的结构。固定床安装简单,但焦油较多;外循环流化床燃烧效率高,但回料装置较难控制;内循环流化床不易结焦、氢含量高且不用考虑返料问题;双流化床结构复杂但焦油量少。将对固定床和流化床进行对比,认为固定床安装简单适合农村地区,流化床应不断改进和完善,更适应工业化生产。  相似文献   

20.
通常,具有高含氮资源禀赋生物质在能源化利用过程中需控制NOx排放。解耦燃烧是可适用于高含水、高含氮燃料的低NOx燃烧技术,其对NOx生成的抑制效果优于其他燃烧技术。为揭示解耦燃烧中热解挥发产物的原位控氮潜力、发展双流化床解耦燃烧技术,以糠醛渣为原料,借助固定床装置和双流化床装置,分别开展其热解特性和双流化床解耦燃烧近实际工况模拟研究。具体地,首先在固定床反应器中考察糠醛渣在不同温度下的热解产物分布,继而借助双流化床反应器考察了热解在线挥发产物对热解半焦同步燃烧烟气中NOx的还原效果。结果表明:在500~700℃热解温度区间内,随温度的升高,半焦产率逐渐减少,从45.2%下降到39.8%;气体产率呈明显上升趋势,从12.4%上升到22.5%,CO、CH4、H2等还原性组分产率增加显著;焦油产率略有降低,从15.9%降低到12.9%;水分产率变化不大。双流化床解耦燃烧实验中,糠醛渣热解挥发产物对热解半焦同步燃烧所产烟气控氮效果良好,热解挥发产物对半焦燃烧烟气NOx减排效果主要受热解温度、二次风占比影响,总过量空气系数ER=1.3,热解温度600℃、二次风过量空气系数ER2=0.5时,糠醛渣热解挥发产物对相同热解条件下生成的半焦燃烧(900℃,过量空气系数ER1=0.8)所产烟气原位控氮效果达到最优,NOx减排率为54.80%。这表明,可通过控制热解挥发分产物产率、氧化程度,充分发挥挥发分的NOx还原能力,从而明显改善解耦燃烧原位控氮效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号