首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recently, 5‐amino‐1H‐tetrazole is developed for practical use as a substitute for sodium azide, which is conventionally used as a fuel component of gas generating agents for automobile airbags. In this study, the combustion mechanisms of the mixtures 5‐amino‐1H‐tetrazole/potassium nitrate and 5‐amino‐1H‐tetrazole/sodium nitrate have been examined. It has been found that the Granular Diffusion Flame model is applicable to the tested samples even when a molten layer exists at the burning surface. In addition, it is shown that within the pressure range of 1–5 MPa, the greatest factor which affects the burning rate is the diffusion process. It is also demonstrated that the fuel component decomposes first, and the oxidizer decomposes next. Meanwhile, it has also been confirmed that the burning rate increases with an increase in pressure because the flame approaches the burning surface and the amount of heat transfer to the solid phase increases. In spite of a decrease in the amount of heat transfer from the gas phase to the solid phase and an increase in the thickness of the condensed phase reaction zone for a mixture with higher fuel content, there are little differences in the burning rates probably because of an increase in the rate of decomposition of the solid phase.  相似文献   

2.
To enhance the affinity of 4‐vinyl pyridine to l ‐phenylalanine (l ‐Phe) and convert the imprinting process from the aqueous phase to the organic phase, an oil‐soluble amino acid ionic liquid was introduced as a template. In this study, 1‐butyl‐3‐methylimidazolium α‐aminohydrocinnamic acid salt was first applied to prepared surface molecularly imprinted polymers (MIPs) in acetonitrile for the selective recognition of l ‐Phe. Fluorescence quenching analysis of the functional monomer on the template was investigated under different conditions to study the imprinting mechanism. Several binding studies, such as the sorption kinetics, sorption thermodynamics, and solid‐phase extraction application, and the chiral resolution of racemic phenylalanine were investigated. The binding isotherms were fitted by nonlinear regression to the Freundlich model to investigate the recognition mechanism. The affinity distribution analysis revealed that polymers imprinted by ionic liquid showed higher homogeneous binding sites than those imprinted by l ‐Phe. The competition tests were conducted by a molecularly imprinting solid‐phase extraction procedure to estimate the selective separation properties of the MIPs for l ‐Phe. The target MIP was shown to be successfully for the separation of l ‐Phe from an amino acid mixture. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42485.  相似文献   

3.
A series of novel quinoline derivatives having a spirocyclopropyl ring can be synthesized by one‐pot, three‐component aza‐Diels–Alder reactions of arenecarbaldehydes, arylamines, and methylenecyclopropanes (MCPs) using a heterogeneous solid acid catalyst, montmorillonite KSF, under mild reaction conditions in good to excellent yields.  相似文献   

4.
The present study investigated mixed polyolefin compositions with the major component being a post‐consumer, milk bottle grade high‐density polyethylene (HDPE) for use in large‐scale injection moldings. Both rheological and mechanical properties of the developed blends are benchmarked against those shown by a currently used HDPE injection molding grade, in order to find a potential composition for its replacement. Possibility of such replacement via modification of recycled high‐density polyethylene (reHDPE) by low‐density polyethylene (LDPE) and linear‐low‐density polyethylene (LLDPE) is discussed. Overall, mechanical and rheological data showed that LDPE is a better modifier for reHDPE than LLDPE. Mechanical properties of reHDPE/LLDPE blends were lower than additive, thus demonstrating the lack of compatibility between the blend components in the solid state. Mechanical properties of reHDPE/LDPE blends were either equal to or higher than calculated from linear additivity. Capillary rheological measurements showed that values of apparent viscosity for LLDPE blends were very similar to those of the more viscous parent in the blend, whereas apparent viscosities of reHDPE/LDPE blends depended neither on concentration nor on type (viscosity) of LDPE. Further rheological and thermal studies on reHDPE/LDPE blends indicated that the blend constituents were partially miscible in the melt and cocrystallized in the solid state.  相似文献   

5.
Poly‐γ‐glutamic acid (γ‐PGA) is a natural polymer that is widely recognized as a component in the viscous filaments of fermented soybean (natto). γ‐PGA is known for its superior biodegradability, biocompatibility and water retention characteristics. Crosslinked γ‐PGA is commonly used as a hydrogel, but it is not used in the fiber form because it is soluble in water. In this study, we demonstrate the use of γ‐PGA‐Na for production of water insoluble γ‐PGA nanofibers by electrospinning. This result was accomplished using an aqueous solvent containing 10 wt % of an oxazoline component polymer as the crosslinking agent and by heat treatment. The crosslinking reaction was evaluated by solid‐state NMR. The nanofiber webs showed a high level of moisture absorption capability while retaining their fibrous shape. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

6.
Numerical methods of particle technology are used to model the formation of catalyst precursors with the purpose to control disperse properties. A multicomponent and multiphase population balance model is applied to the precipitation of catalyst precursors in a T‐mixer. Copper precursors are chosen to be investigated in detail as a basis for catalysts with a broad range of applications such as in methanol synthesis, water‐gas shift and hydrogenation reactions. The simulations results could be validated by ex situ measurements such as the pH of the suspension, the solid dry weight of the precipitate, and the yield. Simulations show that dissociation reactions of copper and carbonate species in water control significantly the formation of Georgeite. Consumption of the copper component by solid formation can be controlled in a range of 20–100% by the adjustment of the pH of the copper nitrate reactant solution. © 2015 American Institute of Chemical Engineers AIChE J, 61: 2104–2116, 2015  相似文献   

7.
Homoallylic amines are synthesized by the three‐component coupling reaction of aldehydes, amines and allyltributylstannane using a heterogeneous solid acid catalyst, montmorillonite KSF, under mild reaction conditions to afford the corresponding homoallylic amines in excellent yields.  相似文献   

8.
Protein‐imprinted soft‐gel composite microspheres with magnetic susceptibility (MS‐PIGMs) were prepared by inverse suspension polymerization using Fe3O4 particles as magnetically susceptible component and bovine serum albumin and lysozyme (Lyz) as templates, respectively. The average content of magnetically susceptible component (Fe3O4) inside MS‐PIGMs was determined using thermogravimetric analyzer, and the magnetic characteristics of MS‐PIGMs were measured by vibrating sample magnetometer. The results showed that the resulting MS‐PIGMs had a certain magnetic response to external magnetic fields, and their average content of Fe3O4 was 2.08%. Their recognition specificity was investigated using BSA and Lyz as both templates and control molecules and characterized by high‐performance liquid chromatography, and the mechanism of imprinting and recognition was analyzed. It was shown that the resulting BSA imprinted soft‐gel composite microspheres with magnetic susceptibility (BSA‐PIGMs) and Lyz imprinted soft‐gel composite microspheres with magnetic susceptibility (Lyz‐PIGMs). All exhibited good recognition selectivity for their templates, and the relative separation factor (β) was 4.75 and 5.88, respectively. The recognition selectivity of MS‐PIGMs to their templates depended mainly on the synergic action of a large quantity of hydrogen binding being caused by complementation and very close contact of outer surface of proteins with inner surface of “imprinting cavities.” © 2005 Wiley Periodicals, Inc. J Appl Polym Sci, 2006  相似文献   

9.
The objective of this research project is to develop a rapid molecular method for monitoring nitrification in a wastewater reactor. In the developed method, a monoclonal antibody (Hyb 153‐3) was used because it can specifically recognize non‐denatured enzymes responsible for nitrite oxidation in Nitrobacter and Nitrospira. The recognition of these enzymes under non‐denatured conditions can significantly simplify the procedures of future immunoassays for environmental samples collected from various natural and engineered systems. This paper presents the ability of the selected Hyb 153‐3 antibody to recognize the non‐denatured form of the nitrite‐oxidizing enzyme of Nitrospira in an aqueous phase as well as when the enzyme has been immobilized on a solid surface. Copyright © 2005 Society of Chemical Industry  相似文献   

10.
A 3‐MPa, 350 °C fixed‐bed reactor was designed to follow‐up gas‐liquid‐solid reactions on a millimetric size heterogeneous catalyst with Raman spectroscopy. The transparent reactor is a quartz cylinder enclosed in a Joule effect heated stainless‐steel tube. A methodology to determine how to focus the microscope for liquid and solid phase characterization is presented. The setup was validated by performing diesel hydrodesulfurization on a CoMo/alumina extrudate catalyst with a conversion very close to expected values along with the acquisition of Raman spectra of the solid catalyst showing an evolution of the catalyst phase during sulfidation.  相似文献   

11.
BACKGROUND: Airlift reactors are of interest for many different processes, especially for three‐phase systems. In this study the behavior of a high‐loading three‐phase external‐loop airlift reactor was examined. In particular, the effect of parameters such as airflow rate (riser superficial gas velocities between 0.003 and 0.017 m s?1), solids loading (up to 50%, v/v) on liquid circulation velocity in the air‐water‐alginate beads system as a crucial hydrodynamic parameter was studied. RESULTS: It was observed that increase of the airflow rate resulted in increase of the liquid velocity in the system. The same result but less pronounced was observed by introducing small amounts of solid particles up to 7.5% v/v. However, further introduction of solids caused decrease of the liquid velocity. Laminar regime for the liquid circulation was observed for low gas velocities. Minimum gas velocities for recirculation initiation in the reactor were determined for all solid loadings and linear dependence on the solid content was found. Gas holdups for the three‐phase system were larger than for the two‐phase system in all experiments. A simple model for predicting the liquid circulation velocity in the three‐phase system with high solid loading of low‐density particles was developed. This model is based on the viscosity of integrated medium (solid + liquid) which is a new aspect to analyze this phenomenon. CONCLUSIONS: The developed model shows very good agreement with the experimental results for all solid loadings. It also includes the influence of reactor geometry on the liquid circulation velocity thus enabling optimization. Copyright © 2012 Society of Chemical Industry  相似文献   

12.
The surface properties of solvent‐based (SB) and water‐based (WB) coatings and their impact on fouling during convective heat transfer of CaSO4 solutions were investigated. Experiments demonstrated that the SB coatings had generally better non‐adhesive characteristics, especially at higher values of the electron donor component since the deposits could easily be washed away. For the SB coatings, a longer induction period compared to those of untreated surfaces was observed and a significant reduction of the fouling rate could be achieved. Further analysis of surfaces revealed that SB coatings enhanced the acid‐base repulsive force and thus reduced the deposit/solid adhesion energy. For the WB coatings, the Liftshitz‐van der Waals attractive force plays a decisive role in the adhesion process due to the higher apolar component of the surface energy.  相似文献   

13.
We recently demonstrated that siRNAs conjugated to triantennary N‐acetylgalactosamine (GalNAc) induce robust RNAi‐mediated gene silencing in the liver, owing to uptake mediated by the asialoglycoprotein receptor (ASGPR). Novel monovalent GalNAc units, based on a non‐nucleosidic linker, were developed to yield simplified trivalent GalNAc‐conjugated oligonucleotides under solid‐phase synthesis conditions. Synthesis of oligonucleotide conjugates using monovalent GalNAc building blocks required fewer synthetic steps compared to the previously optimized triantennary GalNAc construct. The redesigned trivalent GalNAc ligand maintained optimal valency, spatial orientation, and distance between the sugar moieties for proper recognition by ASGPR. siRNA conjugates were synthesized by sequential covalent attachment of the trivalent GalNAc to the 3′‐end of the sense strand and resulted in a conjugate with in vitro and in vivo potency similar to that of the parent trivalent GalNAc conjugate design.  相似文献   

14.
M. Asif 《化学工程与技术》2001,24(10):1019-1024
The overall expansion of two dissimilar solid particle species with over a tenfold difference in their size and substantial density difference is investigated here for different compositions of the fluidized bed. Contrary to the widely held notion that the total bed height would be the sum of the heights of the two segregated mono‐component beds, the actual bed heights were, in fact, found to be lower. This volume contraction is found to strongly depend upon the mixing behavior prevailing in the binary‐solid fluidized bed. At the complete mixing of the two solid species, the bed‐contraction versus liquid velocity profile shows a global maximum. As a result, the overall bulk density profiles are similarly affected. Moreover, it is found here that correlations meant for predicting the porosity of the packing of binary particle mixtures can be satisfactorily extended to binary‐solid fluidized beds where solid species differ significantly in size.  相似文献   

15.
Wood plastic composites (WPCs) are a new class of materials which combine the characteristics of plastic and wood. In appearance, they are similar to wood, but the low stiffness of plastics makes the composite modulus significantly lower than that of solid wood. Increasing the wood content in the WPCs can improve stiffness, but the rate of water absorption also goes up. Here, nanoclay was compounded with wood and plastic using a twin screw extruder to form a three‐component composite to improve the stiffness of WPCs. To overcome the previously observed reduction in strength and increase in the rate of water absorption, different compounding procedures were used. It was found that pre‐compounding wood flour with polymer followed by incorporation of clay in a second step resulted in an increase in stiffness, retention in strength, and a reduction in the rate of water absorption. Thus, adding nanoclays is an alternative for increasing properties instead of adding extra wood flour to a concentration in excess of 55 wt% as this involves processing difficulties. POLYM. ENG. SCI., 50:2013–2020, 2010. © 2010 Society of Plastics Engineers  相似文献   

16.
The feasibility to discriminate among samples of different fat blends prior and after inorganic or lipase‐catalyzed interesterification, via pattern recognition techniques [principal component analysis (PCA) and discriminant analysis (DA)], was investigated. Blends I and II, consisting of mixtures of palm stearin, palm kernel oil and a concentrate of triacylglycerols (TAG) rich in n‐3 polyunsaturated fatty acids (EPAX 4510TG or EPAX 2050TG) were used. These blends, prior (64 samples) and after interesterification, catalyzed by an immobilized Thermomyces lanuginosa lipase (Lipozyme TL IM, 54 samples) or by sodium methoxide (10 samples), were characterized by their acylglycerol profiles (25 chromatographic peaks) and solid fat content (SFC) at 10, 20, 30 and 35 °C. PCA on the multivariate data (i) showed that the initial samples were characterized by higher SFC and higher contents of high‐melting TAG and (ii) suggested two separate clusters of initial and interesterified samples. DA was performed on the multivariate data to determine which of the 29 variables have discriminative power. When the 124 samples, characterized by their acylglycerols, were grouped into (i) initial and interesterified samples of blends I or II (four groups) or (ii) also by the catalyst used (six groups), 98.4% of the samples were correctly classified.  相似文献   

17.
The layer‐inversion behavior of down‐flow binary solid‐liquid fluidized beds is predicted using the property‐averaging approach. The binary pair in this case consists of a larger solid species which is also heavier than its smaller counterpart, while both are lighter than the fluidizing medium. The model is based on using the generalized Richardson‐Zaki correlation for evaluation of the bed void fraction wherein mean values of particle properties are used. However, unlike the maximum bulk density condition for the conventional up‐flow binary solid fluidized bed, the model is based on a minimum bulk density condition for occurrence of layer inversion. This is due to the fact that the volume contraction phenomenon associated with the mixing of unequal solid species leads to a decrease in bulk density of the bed. Model predictions are also compared using the limited data available in the literature. Predictions are consistent with the observed mixing behavior.  相似文献   

18.
Multi‐dimensional multi‐component two‐phase flow modeling of solid propellant combustion in weapons is the new trend of the interior ballistics codes. Most of these codes are designated to large caliber guns and rockets simulation. Only a small number of investigations on small‐caliber gun have been recently reported, where the need of high‐performance and reliable small‐caliber guns stimulated significant interest in developing techniques to understand the phenomenology of small‐caliber ballistics and predict the behavior and the performance of this type of weapons. In this paper, a numerical model describing the combustion of solid propellant in small‐caliber gun is presented. The governing equations with customize parameters were derived in the form of coupled, non‐linear axisymmetric partial differential equations. They were further implemented into the CFD code Fluent. A numerical test showed that Fluent is able to handle correctly the interaction between the moving projectile and the combustion gases in the chamber. The interior ballistics curves along with the performance of small‐caliber gun 5.56 mm were adequately predicted. The numerical results were in agreement with the experimental results.  相似文献   

19.
To obtain a correlation among structure–morphology–mobility–compatibility properties of poly(ethylene‐co‐vinyl acetate) (EVA)/poly(vinyl acetate) (PVAc) blends, we have used scanning electron microscopy and solid‐state nuclear magnetic resonance in our investigations. The results are discussed in terms of blends, component dispersion, plasticization effect, and domain mobilities to acquire a response of the correlation between structural properties. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 2990–2996, 1999  相似文献   

20.
BACKGROUND: Endocrine disruptors in the aquatic environment and their potential adverse effects are currently issues of concern. One of these endocrine disruptors is 2,2‐bis(4‐hydroxy‐3‐methylphenyl)propane (BPP). In this work the molecular recognition interaction of BPP with β‐cyclodextrin (β‐CD) was studied using IR spectroscopy and steady state fluorescence spectroscopy, and the photocatalytic degradation behaviour of BPP based on molecular recognition interaction was investigated in a TiO2/UV–visible (λmax = 365 nm) system. This might provide a new method for the treatment of some organic pollutants in wastewater. RESULTS: β‐CD reacts with BPP to form a 1:1 inclusion complex, the formation constant of which is 4.94 × 103 L mol?1. The photodegradation rate constant of BPP after molecular recognition by β‐CD showed a 1.42‐fold increase in the TiO2/UV–visible (λmax = 365 nm) system. The photodegradation of BPP depended on the concentration of β‐CD, the pH value, the gaseous medium and the initial concentration of BPP. The photodegradation efficiency of BPP with molecular recognition was higher than that without molecular recognition. After 100 min of irradiation the mineralisation efficiency of BPP after molecular recognition by β‐CD reached 94.8%, whereas the mineralisation efficiency of BPP before molecular recognition by β‐CD was only 40.6%. CONCLUSION: The photocatalytic degradation of BPP after molecular recognition by β‐CD can be enhanced in the TiO2/UV‐visible (λmax = 365 nm) system. This enhancement is dependent on the enhancement of the adsorption of BPP, the moderate inclusion depth of BPP in the β‐CD cavity and the increase in the frontier electron density of BPP after molecular recognition. Copyright © 2008 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号