首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Norwalk and Norwalk-like viruses (NLVs) are important causes of foodborne gastroenteritis in restaurant-related outbreaks. Efficacy of common disinfection methods against these viruses on food-contact surfaces and fresh produce is not known partially because of their nonculturability. Seven commercial disinfectants for food-contact surfaces and three sanitizers for fruits and vegetables were tested against cultivable feline calicivirus (FCV). Disks of stainless steel, strawberry, and lettuce were contaminated with known amounts of FCV. The disinfectants were applied at one, two, and four times the manufacturer's recommended concentrations for contact times of 1 and 10 min. The action of disinfectant was stopped by dilution, and the number of surviving FCVs was determined by titration in cell cultures. An agent was considered effective if it reduced the virus titer by at least 3 log10 from an initial level of 10(7) 50% tissue culture infective dose. None of the disinfectants was effective when used at the manufacturer's recommended concentration for 10 min. Phenolic compounds, when used at two to four times the recommended concentration, completely inactivated FCV on contact surfaces. A combination of quaternary ammonium compound and sodium carbonate was effective on contact surfaces at twice the recommended concentration. Rinsing of produce with water alone reduced virus titer by 2 log10. On artificially contaminated strawberry and lettuce, peroxyacetic acid and hydrogen peroxide was the only effective formulation when used at four times the manufacturers' recommended concentration for 10 min. These findings suggest that FCV and perhaps NLVs are very resistant to commercial disinfectants. However, phenolic compounds at two to four times their recommended concentrations appear to be effective at decontaminating environmental surfaces and may help control foodborne outbreaks of calicivirus in restaurants.  相似文献   

2.
The efficiencies of potassium persulphate, isopropanol, hydrogen peroxide and peracetic acid, quaternary ammonium compound, hypochlorite, sodium dichloroisocyanurate, ethanol and phenol derivatives, tertiary alkylamines and dimethyl alamine betaine-based disinfectants and a hypochlorite-based disinfecting cleaning agent were evaluated against eight Listeria monocytogenes strains representing three different ribotypes. All the disinfectants were effective in a suspension test with an exposure time of 30 s at the lowest concentrations recommended by the manufacturer. The efficiencies on surfaces were reduced. However, on clean surfaces all the agents were considered effective when the exposure time was 5 min and the concentration was the average recommended by the manufacturer. Five of nine disinfectants and the disinfecting cleaning agent were considered effective in soiled conditions in the surface test. The most efficient agent was isopropanol-based and the least effective was the disinfectant containing tertiary alkylamine and dimethyl alamine betaine. Differences in bactericidal efficiencies of disinfectants against different L. monocytogenes strains on meat soiled surfaces were found.  相似文献   

3.
Six commercial disinfectants were tested for their efficacy in inactivating hepatitis A virus in solution or attached to agri-food surfaces. Disinfectant I contains 10% quaternary ammonium plus 5% glutaraldehyde; disinfectant II contains 12% sodium hypochlorite; disinfectant III contains 2.9% dodecylbenzene sulfonic acid plus 16% phosphoric acid; disinfectant IV contains 10% quaternary ammonium; disinfectant V contains 2% iodide; and disinfectant VI contains 2% stabilized chlorine dioxide. Among these, disinfectants I and II were shown to be the most effective in inactivating hepatitis A virus in solution. The efficacy of these disinfectants was further tested against hepatitis A virus attached to common agri-food surfaces, including polyvinyl chlorine, high-density polyethylene, aluminum, stainless steel, and copper. Disinfectant II was shown to be the most effective, with a maximum inactivation level of about 3 log10. The inactivation efficacy was shown to be affected by the concentration of the active ingredient, the contact time between the disinfectant and the contaminated surfaces, and the incubation temperature. In general, hepatitis A virus was shown to be highly resistant to most disinfectants tested, and high concentrations of active ingredient were needed to achieve acceptable inactivation levels.  相似文献   

4.
The noroviruses (NoV) are a common cause of human gastroenteritis whose transmission by foodborne routes is well documented. Fecally contaminated surfaces are likely to contribute to this foodborne transmission and to the propagation of viral disease outbreaks. The purpose of this study was to (i) investigate the stability of NoV on various food preparation surfaces; and (ii) evaluate the degree of virus transfer from these surfaces to a model-ready-to-eat (RTE) food. For the virus persistence experiments, stainless steel, formica and ceramic coupons were artificially contaminated with Norwalk virus (NV), the prototype genogroup I NoV; NV RNA; or feline calicivirus (FCV) F9 (a NoV surrogate), stored at ambient temperature for up to 7 d, and periodically assayed for detection. In the transfer experiments, stainless steel coupons were inoculated with NV or FCV F9 and allowed to dry for 10, 30 and 60 min, after which lettuce leaves were exposed to the surface of the coupons at various contact pressures (10, 100, and 1000 g/9 cm2). Virus recovery was evaluated by RT-PCR (for NV and NV RNA) or by plaque assay (for FCV F9) using Crandell Reese Feline Kidney (CRFK) cells. NV and FCV were detected on all three surfaces for up to 7 d post-inoculation; for FCV, there was an approximate 6 to 7-log10 drop in virus titer over the 7 d evaluation period. By contrast, when stainless steel was inoculated with purified NV RNA, RT-PCR detection was not possible beyond 24 h. Transfer of both NV and FCV from stainless steel surfaces to lettuce occurred with relative ease. This study confirms lengthy NoV persistence on common food preparation surfaces and their ease of transfer, confirming a potential role for environmental contamination in the propagation of viral gastroenteritis.  相似文献   

5.
Elimination of contaminating spores on packaging materials and food-contact surfaces remains a challenge to the food industry. Hydrogen peroxide and chlorine are the most commonly used sanitizers to eliminate these contaminants, and ozone was recommended recently as an alternative. Hence, we compared the sporicidal action of ozone and hydrogen peroxide against selected foodborne spores of Bacillus spp. Under identical treatment conditions, 11 microg/ml aqueous ozone decreased spore counts by 1.3 to 6.1 log10 cfu/ml depending upon the bacterial species tested. Hydrogen peroxide (10%, w/w), produced only 0.32 to 1.6 log10 cfu/ml reductions in spore counts. Thus, hydrogen peroxide, at approximately 10,000-fold higher concentration, was less effective than ozone against Bacillus spores. Resistance of spores to ozone was highest for Bacillus stearothermophilus and lowest for B. cereus. Therefore, spores of B. stearothermophilus are suitable for testing the efficacy of sanitization by ozone. Electron microscopic study of ozone-treated B. subtilis spores suggests the outer spore coat layers as a probable site of action of ozone.  相似文献   

6.
Preharvest contamination of produce by foodborne viruses can occur through a variety of agents, including animal feces/manures, soil, irrigation water, animals, and human handling. Problems of contamination are magnified by potential countrywide distribution. Postharvest processing of produce can involve spraying, washing, or immersion into water with disinfectants; however, disinfectants, including chlorine, have varying effects on viruses and harmful by-products pose a concern. The use of ozone as a disinfectant in produce washes has shown great promise for bacterial pathogens, but limited research exists on its efficacy on viruses. This study compares ozone inactivation of human norovirus surrogates (feline calicivirus [FCV] and murine norovirus [MNV]) on produce (green onions and lettuce) and in sterile water. Green onions and lettuce inoculated with FCV or MNV were treated with ozone (6.25 ppm) for 0.5- to 10-min time intervals. Infectivity was determined by 50% tissue culture infectious dose (TCID(50)) and plaque assay for FCV and MNV, respectively. After 5 min of ozone treatment, >6 log TCID(50)/ml of FCV was inactivated in water and ~2-log TCID(50)/ml on lettuce and green onions. MNV inoculated onto green onions and lettuce showed a >2-log reduction after 1 min of ozone treatment. The food matrix played the largest role in protection against ozone inactivation. These results indicate that ozone is an alternative method to reduce viral contamination on the surface of fresh produce.  相似文献   

7.
We conducted a series of experiments to compare the survival of Escherichia coli, feline calicivirus, and F-specific coliphage MS2 on lettuce and cabbage with and without disinfection. Inoculated produce was held at 4, 25, or 37 degrees C for 21 days or was treated with different concentrations of sodium bicarbonate, chlorine bleach, peroxyacetic acid, or hydrogen peroxide. Survival was measured by the decimal reduction value (time to 90% reduction in titer) and the change in log titers of the test organisms. A stronger correlation of survival measures was observed between feline calicivirus and MS2 than between E. coli and either of the viral agents at 25 and 37 degrees C. The maximum time to detection limit for MS2 at all temperatures was 9 days, whereas feline calicivirus was detected for a maximum of 14 days at 4 degrees C. In contrast, E. coli was detectable for 21 days at 4 and 25 degrees C and for 14 days at 37 degrees C. Significant increases in E. coli titer occurred within the first 5 days, but virus titers decreased steadily throughout the experiments. E. coli was also highly susceptible to all disinfectants except 1% sodium bicarbonate and 50 ppm chlorine bleach, whereas the viruses were resistant to all four disinfectants.  相似文献   

8.
9.
Salmonella may be transferred to food through cross-contamination during processing and preparation. To minimise the risk of cross-contamination, proper cleaning and disinfection is essential for the food industry. Recently, disinfection of areas for preparation and storage of food has also gained increased popularity in households. There is a range of disinfectants available with different properties and usage areas, and care must be taken to choose the proper disinfectant for the specific application.There are many methods for testing the antimicrobial effect of disinfectants. To evaluate whether a disinfectant will be effective in practical settings, the test method should model real-life situations. Most disinfectants are effective against Salmonella at recommended user concentration in suspension tests. However, a number of factors may reduce the biocidal effect of disinfectants under practical conditions. This include properties of the surface to be disinfected, presence of soiling on the surface, the physiological state of the bacteria exposed to disinfection, including bacteria embedded in biofilms, and the effects of other stresses (e.g. desiccation, starvation and temperature).Here we review the effects of disinfectants used in food related areas in industries and in households against Salmonella. A general overview is given for disinfectants in use and methods used to evaluate effects. Effects of disinfectants against Salmonella in suspension and on surfaces, including biofilms, are presented and compared. Novel control strategies such as use of electrolysed water, antimicrobial surfaces, and anti-biofilm compounds are also covered. Finally, we review the ability of Salmonella to gain reduced susceptibility to disinfectants through adaptation and other physiological responses like biofilm formation.  相似文献   

10.
Cross‐contamination of foods with pathogenic microorganisms such as bacteria, viruses, and parasites may occur at any point in the farm to fork continuum. Food contact and nonfood contact surfaces are the most frequent source of microbial cross‐contamination. In the wake of new and emerging food safety challenges, including antibiotic‐resistant human pathogens, conventional sanitation and disinfection practices may not be sufficient to ensure safe food processing, proper preparation, and also not be environmentally friendly. Nanotechnology‐enabled novel food safety interventions have a great potential to mitigate the risk of microbial cross‐contamination in the food chain. Especially engineered nanoparticles (ENPs) are increasingly finding novel applications as antimicrobial agents. Among various ENPs, photocatalyst metal oxides have shown great promise as effective nontargeted disinfectants over a wide range of microorganisms. The present review provides an overview of antimicrobial properties of various photocatalyst metal oxides and their potential applications as surface coatings. Further, this review discusses the most common approaches to developing antimicrobial coatings, methods to characterize, test, and evaluate antimicrobial efficacy as well as the physical stability of the coatings. Finally, regulations and challenges concerning the use of these novel photocatalytic antimicrobial coatings are also discussed.  相似文献   

11.
探讨在双氧水漂液中加入适量鸡毛蛋白助剂,减少硅酸钠用量,进一步提高棉织物的白度、毛效及断裂强度.将单独硅酸钠、单独鸡毛蛋白助剂及其联合使用对双氧水漂白棉织物白度、毛效及断裂强度的影响,优化复配助荆的漂白工艺条件,评价鸡毛蛋白助剂在双氧水漂白棉织物中的应用效果.结果表明,蛋白助剂有利于改善双氧水漂白效果.  相似文献   

12.
The effects of sodium hypochlorite (NaOCl) and peracetic acid/hydrogen peroxide (PAH) on the inactivation of adherent Listeria monocytogenes LO28 cells were examined. The surfaces tested were stainless steel and polytetrafluoroethylene (PTFE) conditioned or not with an anionic biosurfactant produced by Pseudomonas fluorescens. Dilution-neutralization methods were used to assess the effectiveness of sanitizer solutions on planktonic and adherent cells. Tests were performed on L. monocytogenes cultivated at 37 degrees Celsius (body temperature) or 20 degrees Celsius (ambient temperature). The results demonstrated that i) a total deficiency in nutrients induced by the incubation of cells in 0.15 M NaCl favored the action of NaOCl and PAH on planktonic cells; ii) by reducing the number of cells adhering to stainless steel, pre-conditioning of the surface with the biosurfactant reduced the level of contamination of the surface and thus favored the bactericidal activities of the disinfectants; and iii) the weak binding energies involved in the adsorption of the biosurfactant on PTFE surfaces resulted in there being no reduction by the polymer of the surface contamination. Furthermore, this study confirmed that adherent cells exhibited increased resistance to the actions of the disinfectants when compared to the resistance of planktonic cells.  相似文献   

13.
PurposeTo determine the antimicrobial efficacy of a povidone-iodine system (PVP-I; cleadew, OPHTECS Corporation, Kobe, Japan), a peroxide system (AOSEPT Plus with HydraGlyde, Alcon, Fort Worth, TX), and a chemical multipurpose system (renu fresh, Bausch & Lomb, Rochester, NY) on contact lens case surfaces that are both in contact and not in contact with the solutions during lens disinfection.MethodsThe surfaces of the inner walls, underside of the lid, and lens holder (if applicable) of the cases were inoculated with P. aeruginosa ATCC 27853. The cases were disinfected with the solutions as per their manufacturer instructions. After disinfection, the inoculated surfaces were swabbed and the amount of surviving P. aeruginosa was determined. Following this experiment, separate cases were inoculated and disinfected as before. This time the cases were agitated after recommended disinfection time and the amount of P. aeruginosa in the disinfecting solution was quantified immediately, and again after resting for 7 days. Experiments were conducted in triplicate (n = 3).ResultsUnits are expressed in log CFU. All three solutions significantly reduced P. aeruginosa on direct-contact surfaces (all p < 0.039). On non-contact surfaces, the reduction of P. aeruginosa in the PVP-I system (pre-disinfection: 6.8 ± 0.5, post-disinfection: 1.0 ± 0.0; p < 0.001) was significant, but not for the hydrogen peroxide system (pre-disinfection: 6.3 ± 0.6, post: 5.5 ± 0.5; p = 0.194) and the chemical multipurpose system (pre-disinfection: 6.6 ± 0.1, post-disinfection: 5.6 ± 0.8; p = 0.336). After 7 days post-disinfection, no P. aeruginosa regrowth was observed in the PVP-I system (Day 1: 1.0 ± 0.0, Day 7: 1.0 ± 0.0; p = 1) and the chemical multipurpose system (Day 1: 4.2 ± 0.2, Day 7: 1.8 ± 0.9; p = 0.012), however regrowth was observed in the hydrogen peroxide system (Day 1: 3.4 ± 0.6, Day 7: 6.1 ± 0.4; p = 0.003).ConclusionThe PVP-I system was more effective against P. aeruginosa on non-contact surfaces than the hydrogen peroxide system or the chemical multipurpose system and is capable of inhibiting regrowth of P. aeruginosa for at least 7 days post-disinfection.  相似文献   

14.
Human noroviruses are the most common etiologic agent of foodborne illness in the United States. The inability to culture human noroviruses in the laboratory necessitates the use of surrogate viruses such as murine norovirus (MNV-1) and feline calicivirus (FCV) for inactivation studies. In this study, a novel sanitizer of organic acid (levulinic acid) plus the anionic detergent sodium dodecyl sulfate (SDS) was evaluated. Viruses were treated with levulinic acid (0.5 to 5%), SDS (0.05 to 2%), or combinations of levulinic acid plus SDS (1:10 solution of virus to sanitizer). MNV-1 inoculated onto stainless steel also was treated with a 5% levulinic acid plus 2% SDS liquid or foaming solution. Log reductions of viruses were determined with a plaque assay. Neither levulinic acid nor SDS alone were capable of inactivating MNV-1 or FCV, resulting in a ≤0.51-log reduction of the infectious virus titer. However, the combination of 0.5% levulinic acid plus 0.5% SDS inactivated both surrogates by 3 to 4.21 log PFU/ml after 1 min of exposure. Similarly, MNV-1 inoculated onto stainless steel was reduced by >1.50 log PFU/ml after 1 min and by >3.3 log PFU/ml after 5 min of exposure to a liquid or foaming solution of 5% levulinic acid plus 2% SDS. The presence of organic matter (up to 10%) in the virus inoculum did not significantly affect sanitizer efficacy. The fact that both of the active sanitizer ingredients are generally recognized as safe to use as food additives by the U.S. Food and Drug Administration further extends its potential in mitigating foodborne disease.  相似文献   

15.
ABSTRACT:  This study investigated microbial inactivation via surface-active peracids and used electron spin resonance spectroscopy to characterize the active components and free radical formation.  Bacillus atrophaeus  spores were injected directly into 3 different concentrations of the peracid disinfectant (1.1%, 1.3%, or 1.5%) for various times (5, 10, 15, or 20 s) at 3 different temperatures (50, 60, or 70 °C) to evaluate the sporicidal activity of the disinfectant mixture. Spectroscopy revealed that the combination of hydrogen peroxide, peracetic acid, and octanoic acid were highly effective at forming a complex mixture of sporicidal, free radical intermediates including hydroxyl and superoxide radicals. Individual components of this mixture alone were not as effective as the final combination. This information has practical applications in the food industry for design of effective sanitation and disinfection agents and suggests that kinetic models could be developed to account for both the physical removal and localized inactivation of spores on food-contact surfaces.  相似文献   

16.
The importance of foodborne viruses is increasingly recognized. Thus, the effect of commonly used food preservation methods on the infectivity of viruses is questioned. In this context, we investigated the antiviral properties of d,l-lactic acid, sodium chloride and sodium nitrite by in vitro studies. Two model viruses, Feline Calicivirus (FCV) and Enteric Cytophatic Human Orphan (ECHO) virus, were chosen for this study simulating important foodborne viruses (human noroviruses (NoV) and human enteroviruses, resp.). The model viruses were exposed to different solutions of d,l-lactic acid (0.1-0.4% w/w, pH 6.0-3.2), of sodium chloride (2-20%, w/v) and of sodium nitrite (100, 150 and 200 ppm) at 4 and 20 °C for a maximum of 7 days. Different results were obtained for the two viruses. ECHO virus was highly stable against d,l-lactic acid and sodium chloride when tested under all conditions. On the contrary, FCV showed less stability but was not effectively inactivated when exposed to low acid and high salt conditions at refrigeration temperatures (4 °C). FCV titers decreased more markedly at 20 °C than 4 °C in all experiments. Sodium nitrite did not show any effect on the inactivation of both viruses. The results indicate that acidification, salting or curing maybe insufficient for effective inactivation of foodborne viruses such as NoV or human enteroviruses during food processing. Thus, application of higher temperature during fermentation and ripening processes maybe more effective toward the inactivation kinetics of less stable viruses. Nevertheless, more studies are needed to examine the antiviral properties of these preserving agents on virus survival and inactivation kinetics in the complex food matrix.  相似文献   

17.
18.
Minimal inhibitory concentration (MIC), suspension and biofilm tests were used in evaluating the disinfecting efficacy of eight commercially available disinfectants and four chlorinated alkaline cleaners against 10 strains of Listeria monocytogenes at refrigerated temperatures. The adaptive response and cross-adaptation of L. monocytogenes to the disinfectants and chlorinated alkaline cleaners were investigated. The bactericidal components in the agents used were chlorine, quaternary ammonium compound (QAC), peracetic acid, ethanol and isopropanol. With some exceptions the disinfectants were efficient against the L. monocytogenes strains. One alkaline hypochlorite containing disinfectant was not efficient in the suspension and MIC tests at the lowest concentration recommended by the manufacturer. The chlorinated alkaline cleaners were effective against L. monocytogenes. A QAC-based disinfectant was found to be the least-effective agent on both glass bead-blasted polyethylene and stainless-steel surfaces. Adaptive and cross-adaptive responses of L. monocytogenes strains were observed towards the QAC-based agent, but over 2-fold increases to other agents were not observed. These results suggest that the adaptive responses of L. monocytogenes to disinfectants or chlorinated alkaline cleaners are of a minor concern.  相似文献   

19.
The contamination of enterotoxigenic Clostridium perfringens spores on food contact surfaces posses a serious concern to food industry due to their high resistance to various preservation methods typically applied to control foodborne pathogens. In this study, we aimed to develop an strategy to inactivate C. perfringens spores on stainless steel (SS) surfaces by inducing spore germination and killing of germinated spores with commonly used disinfectants. The mixture of l-Asparagine and KCl (AK) induced maximum spore germination for all tested C. perfringens food poisoning (FP) and non-foodborne (NFB) isolates. Incubation temperature had a major impact on C. perfringens spore germination, with 40 °C induced higher germination than room temperature (RT) (20 ± 2 °C). In spore suspension, the implementation of AK-induced germination step prior to treatment with disinfectants significantly (p < 0.05) enhanced the inactivation of spores of FP strain SM101. However, under similar conditions, no significant spore inactivation was observed with NFB strain NB16. Interestingly, while the spores of FP isolates were able to germinate with AK upon their adhesion to SS chips, no significant germination was observed with spores of NFB isolates. Consequently, the incorporation of AK-induced germination step prior to decontamination of SS chips with disinfectants significantly (p < 0.05) inactivated the spores of FP isolates. Collectively, our current results showed that triggering spore germination considerably increased sporicidal activity of the commonly used disinfectants against C. perfringens FP spores attached to SS chips. These findings should help in developing an effective strategy to inactivate C. perfringens spores adhered to food contact surfaces.  相似文献   

20.
Cells of Lactobacillus delbrueckii subsp. lactis I produced hydrogen peroxide at 5°C in sodium phosphate buffer (0.2M, pH 6.5) with or without glucose. However, if the cells were starved by preincubation in buffer alone, glucose or sodium lactate were necessary to cause hydrogen peroxide production at 5°C. Hydrogen peroxide production by nonstarved cells was confirmed to be in part due to a NADH oxidase. The production of hydrogen peroxide by starved cells in buffer plus glucose in the early stage of incubation was associated with the production of a small portion of lactic acid which disappeared upon further incubation. Additional experiments revealed that hydrogen peroxide was produced in buffer containing sodium lactate added in place of glucose. Results suggested the presence of a lactate oxidase in the organism which used D-lactate to produce hydrogen peroxide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号