共查询到20条相似文献,搜索用时 15 毫秒
1.
利用Gleeble-3800热模拟试验机进行热变形实验,开展含钪2099铝-锂合金的热变形行为研究。研究表明:在热变形初期,随着应变量的增加,流变应力呈急剧上升的趋势。在应变量为0.06左右时,合金在各变形条件下的流变应力均达到峰值;当应变量继续增加时,合金的流变应力开始出现不同程度的下降。ln[sinh(ασ)]与lnε·以及ln[sinh(ασ)]与1/T之间满足线性关系,其平均热变形激活能为182.451 k J/mol,合金热压缩变形时的流变应力方程为ε·=2.05×10~(16)[sinh(0.01752σ)]~(6.542)exp(-182451/RT)。在变形温度为400℃,应变速率为1 s~(-1)条件下,合金组织中存在大量的位错墙;随着应变速率的降低,当应变速率为0.01 s~(-1)时,合金内部可以观察到少量动态再结晶组织。 相似文献
2.
3.
采用万能材料试验机,研究C276高温合金在变形温度650~750°C、变形速度0.35~35mm/s条件下的高温拉伸变形行为,分析了变形温度、变形速率对 C276 合金变形行为的作用及影响规律。结果表明:变形温度和变形速率对合金流变应力有显著影响,流变应力随着变形温度的升高而降低,随着变形速率的提高而增大。在温度为700°C、应变速率为0.35mm/s和3.5mm/s时,曲线呈现出明显的稳态流变应力特征,合金变形机制以动态回复为主;在温度为 750 °C时,随着应变量的增加,合金内发生动态再结晶。利用Zener-Hollomon参数建立了C276合金的变形抗力模型, 求得变形激活能为327.66kJ/mol。 相似文献
4.
5.
通过热压缩实验研究了经均匀化处理后的GH4141合金在变形温度为1000~1200℃和应变速率为0.01-5 s-1条件下的热变形行为,构建了GH4141合金的热变形本构方程,并分析了热变形过程中微观组织的演变规律。结果表明,GH4141合金的峰值应力和峰值应变均随着变形温度的升高和应变速率的减小而显著降低。当变形温度为1100~1150℃时,由于动态再结晶的发生,动态软化逐渐与加工硬化达到平衡,流变应力基本不变,真应力-真应变曲线趋于平稳状态。基于Zener-Hollomon参数的双曲正弦模型可以很好地描述GH4141合金热变形过程中峰值应力与变形温度和应变速率的关系。GH4141合金热变形过程中的再结晶程度随着变形温度升高、应变速率减小和变形量增加而增加。当变形温度≥1100℃,应变速率为0.01~0.1 s-1,变形量≥50%时,合金发生完全动态再结晶。 相似文献
6.
7.
通过熔炼得到了铸态LZ61镁锂合金,对其进行了热压缩变形行为研究,分析了变形温度及应变速率对其热变形行为的影响,并建立了本构方程。结果表明,合金的应变速率敏感指数m=0.218,平均热变形激活能Q=99.21kJ/mol,合金的流变曲线均属于动态再结晶型,流变应力随着温度升高(应变速率降低)而减小。温度及应变速率对合金的动态再结晶影响显著;显微组织的变化证明了动态回复和动态再结晶的发生。铸态合金组织由α-Mg相基体及弥散分布在晶界上的β相组成。经热压缩后,在相同温度下,随着应变速率降低,组织由粗细相间的晶粒转变为细小均匀的再结晶晶粒。在同一应变速率下,随着温度升高,再结晶区域逐渐增大,晶粒明显细化。 相似文献
8.
Cu-Ti合金的热变形行为及其组织研究 总被引:1,自引:0,他引:1
研究了Cu-Ti合金的热模拟压缩试验.试验表明:变形温度的升高和应变速率的减少使峰值应力和稳态应力显著降低,变形温度会影响进入稳态流动所需变形量.建立的Cu-Ti合金高温变形时的流变应力模型表征了变形温度、应变速率和变形程度对流变应力的影响,模型的计算精度较高.根据实验建立了热加工图.通过对热压缩变形过程中组织的观察得出,不连续β相的析出,是材料加工软化的主要原因. 相似文献
9.
在变形温度为1050~1180℃、应变速率为0.1~10s-1、最大真应变为0.7的条件下,采用Gleeble-3500热模拟试验机研究GH4199合金的热压缩变形行为,得到该合金的热变形激活能及热变形方程式,建立合金的热加工图,并通过组织观察对其热加工图进行解释。结果表明:在实验条件下,GH4199合金均表现出动态再结晶特征;变形温度和应变速率对合金流变应力及相应峰值应变大小的影响显著,流变应力及峰值应变均随着变形温度的降低和应变速率的增加而增大;在真应变为0.1~0.7时合金的热加工图相似,随着变形温度的升高及应变速率的降低,能量消耗效率逐渐升高;在应变速率为0.01s-1时,能量消耗效率达到峰值,约为41%。 相似文献
10.
通过热顶锻和热拉伸试验,研究了8090铝-锂合金的热形变行为。结果表明,该合金的可锻性较低,一次形变量不宜过大,铸态下的最佳变形温度在400~500℃之间;热形变过程为动态回复型,其晶粒在热形变过程中一方面被拉长,另一方面又发生回复并形成许多亚晶界。用透射电镜对不同形变量样品的薄膜观察结果表明,回复过程中,变形晶粒内出现位错聚集,并最终形成亚晶界。 相似文献
11.
12.
Al-Zn-Mg-0.25Sc-Zr合金的热压缩变形行为和微观组织演化(英文) 总被引:1,自引:0,他引:1
采用等温轴对称热压缩实验对Al-Zn-Mg-0.25Sc-Zr合金的热变形行为和微观组织演化进行研究。变形温度为340~500°C,应变速率为0.001~10 s-1。结果表明:稳态流变应力随着应变速率的增加和变形温度的降低而增大,该合金的流变应力行为可用双曲正弦形式的本构方程来描述,其变形激活能为150.25 kJ/mol。在变形温度较高和应变速率较低(即Z参数较低)的条件下,动态再结晶更容易发生。随着Z参数的变小,合金的主要软化机制由动态回复转变为动态再结晶,合金中的位错密度降低,亚晶尺寸增大。 相似文献
13.
对T87时效态2297铝锂合金进行中温(150℃)多向压缩直至析出相基本回溶至基体,再对其在160℃与180℃不同时间(0~48 h)条件下进行时效处理,利用透射电镜观察合金的微观组织,研究这种新型热处理工艺对2297铝锂合金组织与力学性能的影响。结果表明:时效温度为160℃时,时效48 h合金的主要析出相为δ'相,与固溶时效工艺相比,析出相析出时间延长。时效温度为180℃时,48 h合金的主要析出相为θ'相、T1相和少量δ'相。与固溶时效工艺相比,强变形固溶时效工艺增强了合金的综合力学性能。 相似文献
14.
《塑性工程学报》2013,(6):98-102
通过单轴超塑性拉伸试验,研究细晶1420铝锂合金在440℃500℃温度范围和1×10-4s-1500℃温度范围和1×10-4s-11×10-2s-1初始应变速率范围内的超塑性变形行为,揭示其变形性能与工艺参数的相关性。结果表明,细晶1420铝锂合金超塑变形真应力-真应变曲线呈现两种典型的流变特征,即当变形初始应变速率低于0.0003s-1时,表现为稳态型;当初始应变速率高于0.0003s-1时,以软化型为主,且随着变形温度的升高和应变速率的降低,峰值应力降低。合金的最佳超塑性变形条件为480℃、1×10-4s-1,在该条件下,延伸率达到550%。随着应变速率的升高,延伸率降低;随变形温度的升高,延伸率则呈先升高后降低的趋势。利用多试样法进行线性拟合,获得试验条件下细晶1420铝锂合金的应变速率敏感性指数m值在0.411×10-2s-1初始应变速率范围内的超塑性变形行为,揭示其变形性能与工艺参数的相关性。结果表明,细晶1420铝锂合金超塑变形真应力-真应变曲线呈现两种典型的流变特征,即当变形初始应变速率低于0.0003s-1时,表现为稳态型;当初始应变速率高于0.0003s-1时,以软化型为主,且随着变形温度的升高和应变速率的降低,峰值应力降低。合金的最佳超塑性变形条件为480℃、1×10-4s-1,在该条件下,延伸率达到550%。随着应变速率的升高,延伸率降低;随变形温度的升高,延伸率则呈先升高后降低的趋势。利用多试样法进行线性拟合,获得试验条件下细晶1420铝锂合金的应变速率敏感性指数m值在0.410.48范围内,超塑变形激活能Q在43.5kJ/mol0.48范围内,超塑变形激活能Q在43.5kJ/mol79.7kJ/mol范围内。 相似文献
15.
采用Gleeble-1500热模拟机研究6016铝合金单道次高温压缩变形时的显微组织演变。采用光学显微镜和透射电子显微镜分析合金在不同变形条件下的组织形貌特征。结果表明:在高温压缩变形时,该合金的变形激活能为270.257kJ/mol,硬化指数为8.5254;流变应力双曲正弦的自然对数值与温度补偿Zener-Hollomon参数自然对数值成线性关系;合金低温、低应变速率时的主要变形组织为动态回复组织,而高温变形时产生局部动态再结晶组织;该铝合金高温变形时的主要软化机制为动态回复,只有在高温、高应变速率下发生部分的动态再结晶;合金平均亚晶粒尺寸随温度补偿应变速率Zener-Hollomon参数的升高而减小。 相似文献
16.
通过热压缩实验研究热等静压态FGH96合金的热变形行为和微观组织演化过程。基于Gleeble-1500,在1000~1150°C和0.001~1.0s-1的条件下进行热压缩实验。对应力—应变数据进行拟合分析,建立FGH96合金的双曲正弦函数形式的本构关系,其形变热激活能为693.21kJ/mol。对各变形条件下的FGH96合金的组织分析表明:在1100°C以上和以下分别发生完全和部分动态再结晶,在高变形温度和低应变速率条件下动态再结晶更容易发生。建立FGH96合金在热加工过程中的动态再结晶的动力学方程和晶粒尺寸演化方程。 相似文献
17.
300M钢的热变形行为及其变形组织演变研究 总被引:1,自引:0,他引:1
基于热压缩实验,对300M钢在应变速率为10s-1下的热变形行为及其变形组织演变进行了研究。结果表明:在试样高度压下量为50%,变形温度为700~750℃时,300M钢的应力-应变曲线呈流变失稳型,且变形组织出现绝热剪切;当变形温度为800~1000℃时,300M钢的应力-应变曲线呈双峰不连续动态再结晶型,且热变形过程出现了两轮动态再结晶;当变形温度为1050~1180℃时,300M钢的应力-应变曲线呈单峰不连续动态再结晶型,且热变形过程只发生了一轮动态再结晶。 相似文献
18.
19.
AlMg6Mn合金在剪切旋压过程中的变形行为与微观组织演变(英文) 总被引:1,自引:0,他引:1
通过力学性能表征、光学显微镜和SEM电镜观察结合EDS分析,对AlMg6Mn合金在剪切旋压过程中的变形行为和微观结构进行研究。将样品在一工业旋压机上进行剪切旋压变形,压下量分别为30%,50%和68%。晶粒在剪切旋压过程中逐渐得到细化。随着压下量的增大,晶粒沿轴向拉长,沿圆周方向收缩。得到了最优的强度和伸长率,这归因于晶粒细化和固溶体中粒子与Mg、Mn原子之间的位错反应。 相似文献
20.
研究了2091铝锂合金的管材热挤压有时的回复与再结晶,挤压变形参数与挤压后亚晶尺寸间的关系,结果表明,铝锂合金热挤压时的主要恢复机制为动态回复和动态再结晶,但动态再结晶需在一定条件下才能激活,温度是决定亚晶大小的最敏感参数,线性发表明,温度补偿应变速率Z和亚晶尺寸d之间满足Hall-Petch关系。 相似文献