首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
在620~710°C范围内,将压缩空气吹入含有陶瓷颗粒的A356铝合金熔体中制备泡沫铝样品。运用AES技术对泡壁表面进行分析,以研究温度对表面氧化膜厚度的影响。根据金属腐蚀学及流体力学原理建立表面氧化膜泡壁氧化动力学模型。从理论上预测不同温度条件下泡沫铝泡壁表面氧化膜的厚度,并与实验值进行对比。结果表明,在620~710°C范围内,考虑上浮过程的模型预测的氧化膜厚度理论值明显高于实验值,而不包含上浮过程的模型预测的理论值与实验值符合较好,且后者能更好地描述泡沫铝泡壁表面氧化膜的氧化过程。研究表明,吹气法泡沫铝泡壁表面氧化膜的氧化速率与温度之间的关系符合Arrhenius公式。  相似文献   

2.
在620~710°C范围内,将压缩空气吹入含有陶瓷颗粒的A356铝合金熔体中制备泡沫铝样品。运用AES技术对泡壁表面进行分析,以研究温度对表面氧化膜厚度的影响。根据金属腐蚀学及流体力学原理建立表面氧化膜泡壁氧化动力学模型。从理论上预测不同温度条件下泡沫铝泡壁表面氧化膜的厚度,并与实验值进行对比。结果表明,在620~710°C范围内,考虑上浮过程的模型预测的氧化膜厚度理论值明显高于实验值,而不包含上浮过程的模型预测的理论值与实验值符合较好,且后者能更好地描述泡沫铝泡壁表面氧化膜的氧化过程。研究表明,吹气法泡沫铝泡壁表面氧化膜的氧化速率与温度之间的关系符合Arrhenius公式。  相似文献   

3.
熔体吹气发泡法制备泡沫铝研究   总被引:6,自引:0,他引:6  
王倩  徐方明  许庆彦  熊守美 《铸造》2007,56(8):814-818
利用熔体吹气发泡法制备出了闭孔泡沫铝,观察了样品的表面形貌,并通过试验测试其力学性能;分析了发泡温度、Al2O3粉末体积分数对泡沫铝制备的工艺影响。试验结果表明:加入的Al2O3粉末必须达到一定的百分比,铝液中通入气体才会产生泡沫,在700℃和720℃时,Al2O3粉末体积分数的临界点分别为4%和6%;泡沫的稳定性随着温度的增高而降低;Al2O3体积分数越大,气体流量越大,泡沫铝孔径越大;但当Al2O3粉末体积分数超过20%时,很难发泡。  相似文献   

4.
基于吹气法制备A356基泡沫铝工艺,采用高速搅拌并分批连续加入粉末的方式,避免熔体中颗粒分布不均匀的问题;采用静置吹气头通入压缩空气发泡,通过设计和控制气路,制备出不同孔径、不同壁厚、稳定的泡沫铝.结果表明A356基泡沫铝是一种典型的塑性泡沫材料,泡孔呈十四面体形状,泡壁较薄,厚度小于150μm,可控的泡孔平均直径范围很宽,为10~25mm;泡沫铝在致密化阶段的塑性变形量可达70%以上;不作任何预处理的泡沫铝在高频率声波下的吸声系数可达0.9以上;在泡沫样品后设置0~70mm空腔,其在低频率声波下的吸声性能显著提高;所制备的泡沫铝具有较好的声学性能和力学性能.  相似文献   

5.
针对吹气法制备的高孔隙率闭孔泡沫铝,通过实验和有限元分析研究泡壁材料性能对其压缩性能的影响。向添加陶瓷颗粒的A356合金熔体中吹气发泡制备实验样品并进行单向压缩。通过光学显微镜和扫描电镜观察泡壁的微观组织和断口组织。结果表明,泡壁中存在的颗粒团聚、孔洞等缺陷和氧化膜削弱了其性能,因此,泡沫材料的性能与原材料性能有很大差别。基于原材料性能和实体材料性能的实验结果,对泡沫铝理想三维结构进行有限元分析。材料的平台应力与泡沫材料的屈服强度成正比。有限元模拟结果稍高于实验结果,其部分原因是将实体材料性能看做泡壁材料性能导致的。  相似文献   

6.
熔体吹气发泡法制备泡沫铝的试验研究   总被引:7,自引:0,他引:7  
利用熔体吹气发泡法制备闭孔泡沫铝的工艺以及工艺参数对发泡效果的影响,发现以铝硅合金为原料,Al2O3颗粒为增粘剂制备的泡沫铝孔隙率达90%以上,气孔均匀的泡沫铝其工艺参数为:发泡温度为750~780 ℃,增粘颗粒体积分数为10%~15%,气体流量为0.5~1.5 L/min.研究表明,熔体吹气发泡法制备泡沫铝简单、高效,制备样品孔隙率高,是一种有较好开发前景的制备方法.  相似文献   

7.
研究加入Ca元素对吹气法制备泡沫铝工艺中颗粒分散程度和泡沫稳定性的影响,考察加入质量分数为1%的Ca后A356铝合金熔体中陶瓷颗粒团聚尺寸、临界吹气深度、泡壁厚度和Al2O3颗粒在气泡界面处浸润角的变化。结果表明:加入Ca使熔体中颗粒团聚尺寸减小,令微小颗粒的分散变得容易,但使临界吹气深度增加,不利于泡沫的稳定;吹气法工艺中,Al2O3颗粒在气泡界面处的浸润角约为65°,小于理想值90°,加入Ca使颗粒的浸润性进一步远离理想值,因此,尽管加入Ca使颗粒团聚尺寸减小,但同时增大壁厚,泡沫的稳定性依然变差。  相似文献   

8.
比较研究了熔体发泡法和吹气法制备泡沫铝的工艺过程、泡沫结构特点、泡壁凝固组织、气孔率和气孔尺寸、性能特点和应用.为实际生产和应用中合理选择泡沫铝的制备方法提供参考.  相似文献   

9.
比较研究了熔体注气法与熔体发泡方法制备的闭孔泡沫铝性能和组织结构。压缩试验表明,相同密度下,熔体发泡法制备的泡沫铝性能优于熔体注气法。相应的SEM观察表明,熔体注气法制备的泡沫铝泡孔表现为多面体形状,SiC颗粒密度高,泡孔壁薄、褶皱多。冶金组织复杂,氧化明显,表现出明显的脆性。熔体发泡法制备的泡沫铝孔洞形状为球形,孔壁较厚,泡壁相对平整、结构完整。因孔洞结构和组织结构差异导致2种方法制备的泡沫铝材料压缩性能差异明显。  相似文献   

10.
采用胶粘法制备大尺寸钢质泡沫铝夹心板,测试夹心板的三点弯曲强度,分析面板厚度、芯层厚度对夹心板弯曲性能的影响规律,研究弯曲载荷作用下的夹心板失效机理。结果表明:钢质泡沫铝夹心板可承受很高的弯曲载荷,夹心板抗弯强度随着芯层泡沫铝厚度的提高而提高。增加钢面板的厚度,夹心板抗弯强度整体呈增强趋势。当面板厚度为8 mm、芯层厚度为50 mm时,夹心板的极限抗弯强度可达66.06 kN。芯层泡沫铝内泡壁表面的大尺寸裂纹是夹心板在弯曲载荷作用下失效的主要原因;采用熔体发泡法制备的泡沫铝板材,因冷却强度过大而导致的附加应力使泡壁的强度下降,也是影响夹心板力学性能的主要因素。  相似文献   

11.
以青铜粉为原料、CaCl_2为造孔剂,采用粉末烧结溶解法制备开孔泡沫青铜。通过改变造孔剂体积分数和粒径成功制备出孔隙率为70%~90%,孔径1~3mm的泡沫青铜试样。研究了孔隙率和造孔剂的关系以及孔隙率、孔径对泡沫试样力学性能的影响,并对其孔结构,相组成和微观形貌进行观察和分析。结果表明:泡沫青铜试样的塑性屈服平台应力随孔隙率增加而减小,当孔隙率为77%~89%时,对应塑性屈服平台应力为12.6~2.6MPa。当应变量为50%时,孔隙率为77%~89%的泡沫青铜单位体积能量吸收值(W)范围为6.21~0.91MJ/m~3。试样的理想吸能效率(I)都接近0.82,说明泡沫青铜可以作为一种理想的吸能材料。  相似文献   

12.
熔体发泡法制备泡沫铝过程中无泡层的形成与控制   总被引:2,自引:0,他引:2  
对熔体发泡法制备泡沫铝过程中无泡层的形成与控制进行研究,考察熔体中加入金属镁后的表面张力以及镁的加入对无泡层厚度的影响,结果表明:泡沫铝制备过程中无泡层的形成分为3个阶段,第一阶段为发泡初期短时间内形成,在这个过程中,气泡向上运动,部分液体残留在底部形成无泡层;第二阶段和第三阶段为气泡长大过程,由于液膜液体与Plateau边界处处存在压力差,促使液膜处的液体流向Plateau边界处,最后通过Plateau通道流向底部形成无泡层;向加入3%Ca(质量分数)的纯铝熔体中再加入0.5%Mg后,熔体的表面张力显著降低,泡沫体中无泡层的厚度得到很好的控制。  相似文献   

13.
选用直径为40~80μm的空心玻璃微珠、铝粉为原料,制备含有不同体积分数的空心玻璃微珠Al基泡沫材料,并分析其显微组织与性能。研究结果表明,空心玻璃微珠Al基泡沫材料的密度范围在1.37~2.21 g/cm~3,孔隙率为18.23%~49.13%。当空心玻璃微珠的体积分数为30%、40%时,微珠分布比较均匀;体积分数达50%时,微珠出现团聚,团聚随着体积分数的增大而变得严重,团聚处微珠与基体的结合不好;在制备样品过程中,基体铝发生轻微氧化,微珠与基体也发生微量反应;微珠体积分数为40%的泡沫材料的吸能能力较好,达到62.88 MJ/m~3;材料的吸能能力随着微珠含量的增多而降低。  相似文献   

14.
浸渍法制备泡沫铝的显微组织和力学性能(英文)   总被引:1,自引:0,他引:1  
利用聚合物泡沫采用压力浸渗铸造工艺制备开孔泡沫铝。所制备的泡沫铝能够很好地复制聚合物泡沫的几何尺寸。开孔泡沫铝的强度比闭孔泡沫铝的低很多,从而得到更多的应用。添加陶瓷颗粒可以改善泡沫铝的力学性能。本研究中,向 AC3A 铝合金中添加 SiC 颗粒得到复合材料泡沫。在复合材料泡沫中,SiC 颗粒嵌入在合金基体中及孔筋表面。高体积分数的陶瓷颗粒使合金泡沫铝的压缩强度、能量吸收、显微硬度增大。这些性能的改善归结为于泡沫铝的结构改变以及 SiC 颗粒存在于结点和孔筋处而引起的强度增加。  相似文献   

15.
《轻金属》2016,(1)
本文在采用粉末冶金发泡法制备泡沫铝的基础上,研究相关参数对制备泡沫铝的影响。通过分析可知,Ti H2的分解峰值温度为640℃,与铝的熔点十分接近,是一种制备泡沫铝更好的发泡剂;纯铝发泡合适温度为700℃到750℃之间,发泡时间宜选择在900s左右;铝粉表面氧化膜对泡沫铝产生影响,氧化膜含量在9.8%左右时,孔隙率达到最大。  相似文献   

16.
采用熔体直接发泡法制备纯铝基泡沫材料,研究了熔体发泡后泡沫体在自然冷却条件下的凝固特性,分析了强制水冷条件下泡沫体的凝固过程.结果表明,当纯铝基泡沫自然冷却时,表现出外层泡沫以层状凝固方式凝固,内层泡沫以体积凝固方式凝固的特性,得到的泡沫铝中心轴处有裂纹缺陷出现;当泡沫体在强制水冷下冷却时,泡沫体以层状凝固方式凝固,得到的泡沫体内部孔隙均匀,无裂纹缺陷.通过建立纯铝基泡沫凝固模型,分析可知,层状凝固时,凝固收缩均匀分布于整个泡壁.整体凝固收缩消除了泡壁局部由于凝固而产生的裂纹,使泡沫铝孔隙均匀,内部无裂纹缺陷产生.  相似文献   

17.
在熔体发泡法制备泡沫铝的过程中,研究了陶瓷颗粒与熔体合金元素共同增粘对泡沫铝孔结构、孔隙率和力学性能的影响。运用SEM、EDS等技术,对不同增粘制备的泡沫铝的胞壁微观组织进行检测。分析了新相对泡沫铝孔结构和孔隙率的影响。在相同加载速度下,对泡沫铝样品做了准静态压缩试验,分析了不同增粘泡沫铝的力学性能。结果表明:氧化钙与单质钙共同增粘可制备出气孔分布均匀、孔隙率较高的泡沫铝。泡沫铝胞壁中的金属间化合物在气孔合并、长大过程中,对气孔保持规则的泡孔结构、增加孔隙率具有重要作用。采用共同增粘制备的泡沫铝不仅具有单质钙增粘的高能量吸收性能,还具有氧化钙增粘的较高屈服强度。  相似文献   

18.
粉末冶金发泡时泡沫铝孔结构及泡壁的微观组织演变   总被引:5,自引:1,他引:5  
研究了粉末冶金法制备泡沫铝时泡沫孔结构及胞壁微观组织变化的规律.泡沫铝发泡时经历微膨胀、显著膨胀和收缩等过程;孔结构经历了形核和长大,以及在毛细力和重力驱动下泡壁熔体的流动引起的合并粗化和孔隙率自上而下梯度减小等演化过程.加热时,铝/硅颗粒边界处硅的扩散层首先熔化,并沿着铝颗粒边界扩散,最终使铝硅粉末复合体完全熔化而实现合金化.实验发现泡壁的凝固组织与典型的变质处理后的铸造铝硅合金的组织类似.  相似文献   

19.
使用廉价CaCO_3作为发泡剂,采用粉末压块熔炼工艺制备单胞间具有通道的半开孔泡沫铝。将铝和CaCO_3粉末混合物冷压缩成在空气气氛和一定温度下发泡的致密圆柱形前驱体。研究前驱体压缩压力、发泡剂含量、发泡温度和发泡时间对所得泡沫铝显微组织、线膨胀率、相对密度和压缩性能的影响。结果表明,所得泡沫铝的显微组织分布均匀,晶粒尺寸小于100μm,具有半开孔结构,相对密度为55.4%~84.4%%。随着压缩压力(127~318)的增大,当发泡剂含量为15%(质量分数)时,泡沫铝的线膨胀率、压缩强度和紧实应变增大。当发泡温度从800°C升高到1000°C时,除压缩强度和相对密度外,泡沫铝的其他参数都增大。研究结果表明,最佳发泡温度和发泡时间分别为900°C和10~25 min。  相似文献   

20.
采用粉末包套轧制法成功制备出泡沫铝夹层板,通过对粉末包套轧制工艺的研究,结合SAYN-CG90数码相机和扫描电镜(SEM)等检测方法系统研究了初始密度和压下率对制备可发泡预制体的影响,以及泡沫铝夹层板的泡孔结构的影响,结果表明:当初始密度大于2.40g/cm3,压下率为65%~75%的时候,可以获得面板表面良好,粉体均匀、致密的预制坯,并且实现面板与芯层的有效结合,最终获得泡孔结构完整和均匀的泡沫铝夹芯板。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号