首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
在温度950~1200℃、应变速率0.13~6.5 s~(-1)及工程应变50%的条件下,利用Gleeble-3500~(TM)热模拟试验机对喷射成形GH738合金进行热压缩试验,研究了合金的热流变行为并建立了流变本构关系,结合显微组织分析及统计技术研究了合金的组织演变情况。结果表明,流变应力随温度的升高和应变速率的减小而降低。合金热变形激活能为580.81kJ·mol~(-1)。随着形变温度的升高,高位错密度处晶界弓出形核使晶界"锯齿"化并形成项链组织,在1100℃获得完全动态再结晶组织,随温度继续升高及应变速率的降低组织明显长大。  相似文献   

2.
采用Gleeble-1500型热模拟机对电铸Ni-W合金在变形温度为400~600℃、应变速率为0.001~0.1 s-1条件下的热压缩变形进行研究,分析合金变形时的流变应力、应变速率及变形温度之间的关系,研究变形温度对合金显微组织的影响,并得到本构方程。结果表明:应变速率和变形温度对该材料的流变应力有显著影响,流变应力随变形温度的升高而降低,随应变速率的提高而增大。当变形温度高于550℃时,合金流变曲线呈现出明显的动态再结晶特征,合金显微组织为完全的动态再结晶组织,该合金的热变形激活能为411.55 kJ/mol。  相似文献   

3.
《塑性工程学报》2015,(2):62-67
采用等应变速率拉伸方法研究温度和应变速率对5A06合金超塑性变形力学性能的影响。结果表明,在温度375℃~500℃时,应变速率对5A06铝合金的流变应力及抗拉强度有显著影响,流变应力及抗拉强度随着应变速率增大而增大;在一定的应变速率下,流变应力随着变形温度的升高而降低。基于Backofen本构方程,对5A06铝合金在不同温度状态下的强化规律进行分析,结果表明,随着温度的逐渐升高,应变速率敏感性指数先增大后减小,5A06铝合金最佳的超塑性参数为温度T=400℃,应变速率ε=0.005s-1。  相似文献   

4.
采用等应变速率拉伸法研究了温度和应变速率对5A90合金超塑性力学性能的影响。结果表明:5A90铝合金最佳变形温度是400℃,在此温度下,不同应变速率条件下,可以获得较大的伸长率,最大伸长率为193.6%;在变形温度为375℃~500℃时,应变速率对5A90铝合金的流变应力及抗拉强度有显著影响,流变应力及抗拉强度随应变速率升高而增大。在同一应变速率下,5A90铝合金流变应力水平随着变形温度的提高而降低。另外,基于Backofen本构方程,对5A90铝合金在不同温度状态下的强化规律进行了分析,结果表明,随变形温度逐渐升高,应变速率敏感性指数先减小后增大,最后得到5A90铝合金最佳超塑性参数为:T=400℃,ε=0.0005s-1。  相似文献   

5.
在Gleeble-3000热模拟试验机上进行等温恒速率热压试验(变形温度800~950℃,应变速率0.001~1.0 s-1),研究了TB8合金的高温塑性变形流变应力变化规律,建立了一个包含应变量的本构方程。结果表明,流变应力随变形温度的升高和应变速率的降低而减小;当ε·≤0.1 s-1时,TB8合金高温热压流变曲线为动态再结晶型流变曲线;热变形激活能Q、材料常数n、α、及ln A均与变形量有关;所建立的本构关系能较好的反应TB8合金高温低应变速率下的流变特征。  相似文献   

6.
本文在600 ℃、5×10-4 s-1条件下对不同γ′相尺寸的毫米级粗晶新型Ni-Cr-Co基合金进行高温拉伸实验,并结合OM,SEM和TEM研究γ′相尺寸对合金高温变形行为和锯齿流变效应的影响。结果表明,γ′相尺寸对合金力学性能影响显著,随着γ′相尺寸的增加,材料强度呈先提高后降低的趋势,合金的主要变形机制由位错切过γ′相转变为位错绕过γ′相;当γ′相尺寸持续增加时,位错运动受阻难以绕过γ′相,溶质原子钉扎可动位错,当应力增大至一定程度时位错脱钉,反复的钉扎与脱钉即动态应变时效导致合金在变形过程中出现锯齿流变效应。可通过调控γ′相尺寸弱化,当γ′相平均尺寸为57.18 nm时,锯齿流变效应微弱,临界应变最大,力学性能较高,因此γ′相最佳尺寸为57.18 nm。  相似文献   

7.
利用Gleeble-1500D热模拟试验机,对Cu-0.2%Zr-0.15%Y合金进行高温热压缩热模拟试验,对合金在应变速率为0.001~1 s-1、变形温度为550~900℃时,试验过程中的流变应力变化、动态再结晶机制及其微观组织变化进行了研究。结果表明,试验合金流变应力受应变温度和变形速率的影响极大,动态再结晶的显微组织对温度的变化反应敏感,当变形温度降低或者应变速率升高时,其流变应力曲线随之上升。通过流变应力、应变速率和变形温度之间的联系,解出了该合金在热压缩变形时的应力指数(n)、应力参数(α)、结构因子(A)、热变形激活能(Q)以及其本构方程。  相似文献   

8.
利用Gleeble-1500D热模拟试验机,对Cu-0.2%Zr-0.15%Y合金进行高温热压缩热模拟试验,对合金在应变速率为0.001~1 s^-1、变形温度为550~900℃时,试验过程中的流变应力变化、动态再结晶机制及其微观组织变化进行了研究。结果表明,试验合金流变应力受应变温度和变形速率的影响极大,动态再结晶的显微组织对温度的变化反应敏感,当变形温度降低或者应变速率升高时,其流变应力曲线随之上升。通过流变应力、应变速率和变形温度之间的联系,解出了该合金在热压缩变形时的应力指数(n)、应力参数(α)、结构因子(A)、热变形激活能(Q)以及其本构方程。  相似文献   

9.
通过高温拉伸试验,研究了AZ31B镁合金板材在250~450℃以及应变速率0.001 s-1、0.01 s-1条件下的高温变形行为,获得了材料的厚向异性系数、伸长率等成形性能参数及有关组织特征.结果表明,不同变形条件下AZ31B合金的真应力-真应变曲线均出现峰值,峰值应力随变形温度的升高和应变速率的降低而减小;硬化速率随变形温度的升高而降低,在温度高于250℃时变化不大.当变形温度为250 ℃,应变速率为0.001 s-1时,合金的厚向异性系数达到最大.随变形温度的升高,AZ31B镁合金的塑性显著提高.合金的动态再结晶温度为250℃,随着应变速率增大,合金发生动态再结晶的速度加快.  相似文献   

10.
利用Gleeble-3800热模拟试验机,在温度800~980℃及应变速率0.001~1 s~(-1)范围内进行了TA15钛合金热压缩试验,研究了TA15钛合金在热变形过程中力学行为特点及微观组织演变规律。研究结果显示,变形温度和应变速率对流变应力影响显著。随着变形温度升高和应变速率的降低,最大变形抗力减小,且使得流变曲线在较小应变下即达到稳态。当变形温度低于或等于900℃时,随应变的增加合金的动态软化效应显著,当温度高于900℃时,合金的软化效应逐渐减弱,这主要与温度升高导致密排六方α相与体心立方β相两相比例改变进而导致主导软化机制改变有关。基于流变曲线,建立了考虑摩擦效应和应变补偿的热变形本构方程。对比分析表明所建立的双曲正弦型本构模型可较好地预测不同变形阶段合金流变应力,可为TA15钛合金热加工工艺的选择等提供参考依据。  相似文献   

11.
采用Gleeble-1500热模拟实验机进行热压缩试验,研究ZA27合金的热变形行为,在变形温度为200~350℃、应变速率为0.01~5 s-1、工程应变为60%,基于Murty准则,建立ZA27合金的加工图。结果表明:流变应力随变形温度的升高而减小,随应变速率的提高而增大;在变形温度为200~210℃、应变速率为0.01~0.1 s-1和变形温度为250~350℃、应变速率为1~5 s-1的2个区域内易产生流变失稳现象;动态再结晶是导致流变软化及稳态流变的主要原因,ZA27合金的安全热加工区域的变形温度在250~350℃之间、应变速率在0.1~1 s-1之间。  相似文献   

12.
在Gleeble-1500D热模拟试验机上,采用高温等温压缩试验,对Cu-2.0Ni-0.5Si-0.15Ag合金在应变速率为0.01~5s-1、变形温度为600~800℃、最大变形程度为60%条件下的流变应力行为进行了研究.分析了实验合金在高温变形时的流变应力和应变速率及变形温度之间的关系.并研究了在热压缩过程中组织的变化.结果表明:热模拟实验中,应变速率和变形温度的变化强烈地影响合金流变应力的大小,流变应力随变形温度升高而降低,随应变速率提高而增大.从流变应力、应变速率和温度的相关性,得出了该合金高温热压缩变形时的应力指数n,应力参数α,结构因子A,热变形激活能Q和流变应力方程.合金动态再结晶的显微组织强烈受到变形温度的影响.  相似文献   

13.
采用Gleeble 3800热压缩试验机、Deform-3D有限元软件和光学显微镜研究了Inconel 718高温合金在950~1150℃温度范围和应变速率0.1~10 s-1范围内的组织演变和温度场模拟。结果表明,在低变形温度和高应变速率下,初始阶段随着应变的增加,流变应力迅速增加到峰值。达到峰值应力后,流变曲线呈现出明显的流变软化现象。在低变形温度、高应变速率下,产生的变形热较大,合金易于发生动态再结晶,且动态再结晶程度较高,晶粒尺寸较小。当应变速率降低,变形热也逐渐降低,合金内部动态再结晶的晶粒体积分数减少。在变形温度为1100℃和应变速率为0.1 s-1时,合金发生完全动态再结晶。基于Deform-3D软件模拟的温度场分布结果可知,低变形温度、高应变速率的热变形条件会使合金内部产生较大的变形热,随着变形温度的升高和应变速率的降低,变形热的值逐渐减小。当变形温度和应变速率一定时,合金内的变形热会随真应变的增加而不断增加。  相似文献   

14.
研究了Al-Li单晶体在不同温度和应变速率范围内产生的锯齿流变及其形态特征.开始产生锯齿流变的临界应变随着温度的升高(或应变速率的降低)先减小再增加.锯齿频率和应力变化幅度受温度和应变速率的影响,但不随应变单调变化.锯齿的类型与其产生的本质以及频率和应力幅度的变化没有明确的对应关系  相似文献   

15.
Mg-3Al-1Zn-0.8Nd合金热压缩变形流变应力的研究   总被引:2,自引:2,他引:2  
使用Gleeble-1500D热模拟实验机对含稀土Nd的镁合金Mg-3Al-1Zn-0.8Nd在变形温度为250-450℃,应变速率为0.01-1s-1条件下的流变应力进行研究。研究结果表明:该合金的流变应力强烈地受变形温度与应变速率的影响。合金的流变应力随变形温度的升高而下降,随应变速率的增加而增加且在变形温度为450℃,应变速率为0.01s^-1时呈稳态流变。该合金的流变应力与变形温度、应变速率的关系可以用幂指数关系描述。在本实验条件下,该合金的变形激活能为154.064kJ·mol^-1。  相似文献   

16.
AZ91镁合金高温变形本构关系   总被引:7,自引:0,他引:7  
王智祥  刘雪峰  谢建新 《金属学报》2008,44(11):1378-1383
采用Gleeble-1500热模拟机对AZ91镁合金进行了高温压缩变形实验,分析了该合金在变形温度为250-400℃,应变速率为0.001-1 s-1条件下流变应力的变化规律.结果表明,变形温度和应变速率均对流变应力有显著的影响,流变应力随变形温度的升高和应变速率的降低而降低,当变形温度≥400℃、应变速率≤0.001 s-1时,流变应力随变形量的增加达峰值后呈稳态流变特征.并采用双曲正弦模型确定了该合金的变形激活能Q和应力指数n随应变量的变化规律,建立了相应的热变形本构关系.经实验验证,所建立的本构关系能较好地反映AZ91镁合金实际热变形行为特征.  相似文献   

17.
在变形温度为1 050~1 140℃、应变速率为0.01~10 s 1和变形率为50%的条件下,采用Gleeble 1500热模拟机研究喷射成形FGH95合金的热压缩变形行为。结果表明:在合金热压缩变形初始阶段,流变应力随应变的增加迅速增大,达到峰值应力后逐渐减小,呈现明显的动态软化特征;合金流变应力随变形温度的升高和应变速率的降低而显著减小;应变速率为0.1~10 s 1时,合金峰值应变随温度升高而减小,并趋于平稳;而应变速率为0.01 s 1时,合金峰值应变在1 100℃出现极大值。考虑变形量对合金热压缩流变行为的影响,引入包含应变量的四次多项式函数对双曲正弦修正的Arrhenius方程进行改进,改进后的本构方程的流变应力预测值与实验值吻合较好,平均相对误差为3.64%。  相似文献   

18.
在Gleeble-1500D热模拟实验机上,在应变速率为0.01~5 /s、变形温度为600~800 ℃条件下,采用高温等温压缩实验对Cu-2.0Ni-0.5Si-0.03P合金的流变应力行为进行研究。结果表明:热模拟实验中,应变速率和变形温度的变化强烈地影响合金流变应力的大小,流变应力随变形温度升高而降低,随应变速率提高而增大;在应变温度为750和800 ℃时,合金热压缩变形流变应力出现明显的峰值应力,表现为连续动态再结晶特征。从流变应力、应变速率和温度的相关性,得出该合金热压缩变形时的热变形激活能和本构方程。  相似文献   

19.
在Gleeble-1500D热模拟试验机上对Cu-Cr-Zr合金在应变速率为0.001~10 s-1、变形温度为650~850℃的高温变形过程中的流变应力行为进行了研究。利用光学显微镜分析了合金在热变形过程中的组织演变及动态再结晶机制。结果表明:流变应力随变形温度的升高而减小,随应变速率的提高而增大。升高变形温度以及降低应变速率,均有利于Cu-Cr-Zr合金的动态再结晶发生。从流变应力、应变速率和温度的相关性,得出了该合金高温热压缩变形时的热变形激活能Q为392.5 kJ/mol,同时利用逐步回归的方法建立了该合金的流变应力方程。  相似文献   

20.
在变形温度为1050~1180℃、应变速率为0.1~10s-1、最大真应变为0.7的条件下,采用Gleeble-3500热模拟试验机研究GH4199合金的热压缩变形行为,得到该合金的热变形激活能及热变形方程式,建立合金的热加工图,并通过组织观察对其热加工图进行解释。结果表明:在实验条件下,GH4199合金均表现出动态再结晶特征;变形温度和应变速率对合金流变应力及相应峰值应变大小的影响显著,流变应力及峰值应变均随着变形温度的降低和应变速率的增加而增大;在真应变为0.1~0.7时合金的热加工图相似,随着变形温度的升高及应变速率的降低,能量消耗效率逐渐升高;在应变速率为0.01s-1时,能量消耗效率达到峰值,约为41%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号