首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
Ferromagnetic metal–organic semiconductor (FM‐OSC) hybrid interfaces have been shown to play an important role for spin injection in organic spintronics. Here, 11,11,12,12‐tetracyanonaptho‐2,6‐quinodimethane (TNAP) is introduced as an interfacial layer in Co‐OSCs heterojunctions with an aim to tune the spin injection. The Co/TNAP interface is investigated by use of X‐ray and ultraviolet photoelectron spectroscopy (XPS/UPS), near edge X‐ray absorption fine structure (NEXAFS) and X‐ray magnetic circular dichroism (XMCD). Hybrid interface states (HIS) are observed at Co/TNAP interfaces, resulting from chemical interactions between Co and TNAP. The energy level alignment at the Co/TNAP/OSCs interface is also obtained, and a reduction of the hole injection barrier is demonstrated. XMCD results confirm sizeable spin polarization at the Co/TNAP hybrid interface.  相似文献   

2.
Monotone span program(MSP) and Linear code(LC) are efficient tools to construct Linear secret sharing scheme (LSSS) for a given access structure.Since the size of an MSP or the length of an LC corresponds to the communicational complexity of an LSSS,one main motivation to study MSPs or LCs is the lower bound for their sizes or lengths.Therefore,it is one of the most important open problems how to efficiently construct an MSP or LC for a given access structure Γ with the smallest sizes or shortest length.Our contributions are:We extend TANG et al.'s result,showing that,for any given access structure Γ,there exists an MSP or an LC to realizeΓ if and only ifa system of quadratic equations has solutions;We utilize the relationship between LCs and MSPs to obtain the greatest lower bound on the row size and the column size of MSPs realizing a given Γ,as well as an upper bound on the column size of MSPs;We give an algorithm to construct an MSP with the smallest sizes.  相似文献   

3.
A key factor for successful design of bioactive complex, organic–inorganic hybrid biomaterials is the facilitation and control of adhesion at interfaces, as many current synthetic biomaterials are inert, lacking interfacial bioactivity. In this regard, the development of a simple, unified way to biofunctionalize diverse organic and inorganic materials toward biomineralization remains a critical challenge. In this report, a universal biomimetic mineralization route that can be applied to virtually any type and morphology of scaffold materials is provided to induce nucleation and growth of hydroxyapatite (HAp) crystals based on phase‐transited lysozyme (PTL) coating. Surface‐anchored abundant functional groups in the PTL enrich the interface with strongly bonded calcium ions, facilitating the formation of HAp crystals in simulated body fluid with the morphology and alignment being similar to that observed in natural HAp in mineralized tissues. By the adhesion of amyloid contained in the PTL, such protein assembly could readily integrate HAp on ceramics, metals, semiconductors, and synthetic polymers irrespective of their size and morphology, with robust bonding stability and corresponding ultralow wear extent under normal bone pressure. This strategy successfully improves the in vivo osteoconductivity of Ti‐based implant, underpinning the expectation for such biomaterial in future biointerface and tissue engineering.  相似文献   

4.
Nanocarbon–metal oxide hybrids are among the most promising functional materials in many cutting‐edge environmental and energy applications where efficient charge separation and extraction are keys to success. The next level of hybrid structures will be achieved once one learns how to control and tune charge/energy transfer processes at the interfaces. However, little is yet known about the nature and extent of these interfacial dynamics in nanocarbon hybrids. Here a model is designed in which ultrathin dielectric layers (Al2O3, ZrO2) between the hybrid's components (ZnO, TiO2) and carbon nanotubes allow for evaluating and tuning of interfacial charge transfer over an unusually long distance of at least 50 nm. Surprisingly, the transfer efficiency correlates linearly with the barrier layer thickness, indicating that electron conduction through the barrier layer constitutes the rate‐limiting step. It is also demonstrated that the charge transfer efficiency can be tuned by the type of interlayer and its degree of crystallinity, thus controlling the hybrid's performance in the photocatalytic production of hydrogen. It is believed that this model system will help to understand and decipher the fundamentals regarding interfacial charge and energy transfer in nanocarbon hybrids with the aim to further advance these hybrid structures for a wide range of energy applications.  相似文献   

5.
A seamless and tough interface to integrate incompatible/immiscible soft materials is highly desired for flexible/wearable electronics and many soft devices with multi-layer structures. Here, a surfactant-mediated interfacial chemistry is introduced to achieve seamless and tough interfaces in soft multi-layer structures, with an ultra-high interfacial toughness up to ≈1300 J m−2 for the architectural gel hybrid (AGH). The reversible noncovalent interfacial interactions efficiently dissipate energy at the interface, thereby providing excellent durability. The interfacial toughness only decreases by ≈6.9% after 10 000 tensile cycles. This strategy can be universally applied to hybrid systems with various interfaces between an interior hydrogel (PAA, PVA, PAAm, and gelatin) and an exterior hydrophobic soft matter (ionogel, lipogel and elastomer). The AGH-based mechano-sensor presents high robustness and stability in a wide range of conditions, including open air, underwater, and various solvents and temperatures. Epidermal bio-monitoring, tactile trajectory, and facial expression recognition are demonstrated using the AGH sensors in various environments. A rich set of electrophysiological signals of high quality are acquired.  相似文献   

6.
Developing catalysts to improve charge‐carrier transfer and separation is critical for efficient photocatalytic applications driven by low‐energy photons. van der Waals stacking of 2D materials has opened up opportunities to engineer heteromaterials for strong interlayer excitonic transition. However, fabrication of 2D heteromaterials with clean and seamless interfaces remains challenging. Here, a 2D tungsten carbide/tungsten trioxide (WC/WO3) heterogeneous hybrid in situ synthesized by a chemical engineering method has been reported. The hybrid comprises of layer‐by‐layer stacked WC and WO3 monolayers. The WC and specific interfacial interfaces between the WC and WO3 layers exhibit synergetic effects, promoting interfacial charge transfer and separation. Binderless WC performing platinum‐like behavior works as a potential substitute for noble metals and accelerates multielectron oxygen reduction, consequently speeding up the photocatalytic decomposition of organic compounds over the WO3 catalyst. The specific interfacial interaction between WC and WO3 layers potentially improves interfacial charge transfer from conduction band of WO3 to WC. In the absence of noble metals, the WC/WO3 hybrid as a catalyst exhibits distinct decomposition of organic compounds with vis–NIR light (λ = 400–800 nm). This finding provides a cost‐effective approach to capture low‐energy photons in environmental remediation applications.  相似文献   

7.
The femtocell has been considered as a promising technology to improve indoor mobile network coverage co‐working with macrocell networks. However, lack of licensed spectrum limits the development of the femtocell service provision. A feasible solution is that a femtocell service provider (FSP) leases spectrum from the existing licensed spectrum holder, the macrocell service provider (MSP). Existing research focuses on the interaction between a single FSP and MSP. In this paper, we investigate a spectrum trading framework for multiple FSPs and MSPs. Under such a scenario, both FSPs and MSPs have to compete with their peers in the trading. To balance the revenue and the cost from the spectrum trading, an analysis is made on how to determine the acceptable spectrum trading prices and volumes for both MSPs and FSPs. To guarantee the fairness of the transaction, we introduce a truthful double auction mechanism for the spectrum trading between FSPs and MSPs, which compels them to report their bids or asks honestly according to their valuations. In particular, the truthfulness and other properties of the spectrum double auction have been proved. Finally, the numerical results illustrate how the acceptable spectrum trading prices and volumes are determined and also how the spectrum double auction mechanism works. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
Effective solid‐state interfacial contact of both the cathode and lithium metal anode with the solid electrolyte (SE) are required to improve the performance of solid‐state lithium metal batteries (SSBs). Electro–chemo–mechanical coupling (ECMC) strongly affects the interfacial stability of SSBs. On one hand, mechanical stress strongly influences interfacial contact and causes side reactions. On the other hand, electrochemical reactions such as lithium deposition cause mechanical deformation and stress at electrode/SE interfaces. To solve the degradation/failure problems of interfaces and provide guidelines to construct high‐performance SSBs, the ECMC at electrode/SE interfaces should be comprehensively investigated. In this review, the problems associated with ECMC at electrode/SE interfaces are summarized. The interfacial degradation/failure mechanisms, including the contact and electrochemical stability of interfaces, are introduced. Mechanical factors affecting interfacial contact and lithium deposition are highlighted. Experimental observation and computational analysis methods for electrode/SE interfaces are then summarized. Strategies to construct stable electrode/SE interfaces, such as assembling stress and wetting layers to improve interfacial contact, 3D SE structure, and plating stress relief to suppress lithium dendrite formation, are reviewed. The remaining challenges to better understanding ECMC and related solutions to aid SSB development are discussed.  相似文献   

9.
In this work, we present a new strategy to construct redox‐active molecular platforms to be used as molecular rectifiers with tunable and amplifiable electronic readout. The approach is based on using ligand‐receptor biological interactions to bioconjugate electroactive bio‐inorganic building blocks onto metal electrodes. The stability of the self‐assembled interfacial architecture is provided by multivalent macromolecular ligands that act as scaffolds for building‐up the multilayered structures. The ability of these electroactive supramolecular architectures to generate a unidirectional current flow and tune the corresponding electronic readout was demonstrated by mediating and rectifying the electron transfer between redox donors in solution and the Au electrode. The redox centers incorporated into the assembled architecture in a topologically controlled manner are responsible for tuning the amplification of the rectified electronic readout, thus behaving as a tunable bio‐supramolecular diode. Our experimental results obtained with these redox‐active bio‐supramolecular architectures illustrate the versatility of molecular recognition‐directed assembly in combination with hybrid bio‐inorganic building blocks to construct highly functional interfacial architectures.  相似文献   

10.
Bone tissue is a complex biocomposite material with a variety of organic (e.g., proteins, cells) and inorganic (e.g., hydroxyapatite crystals) components hierarchically organized with nano/microscale precision. Based on the understanding of such hierarchical organization of bone tissue and its unique mechanical properties, efforts are being made to mimic these organic–inorganic hybrid biocomposites. A key factor for the successful designing of complex, hybrid biomaterials is the facilitation and control of adhesion at the interfaces, as many current synthetic biomaterials are inert, lacking interfacial bioactivity. In this regard, researchers have focused on controlling the interface by surface modifications, but the development of a simple, unified way to biofunctionalize diverse organic and inorganic materials remains a critical challenge. Here, a universal biomineralization route, called polydopamine‐assisted hydroxyapatite formation (pHAF), that can be applied to virtually any type and morphology of scaffold materials is demonstrated. Inspired by the adhesion mechanism of mussels, the pHAF method can readily integrate hydroxyapatites on ceramics, noble metals, semiconductors, and synthetic polymers, irrespective of their size and morphology (e.g., porosity and shape). Surface‐anchored catecholamine moieties in polydopamine enriches the interface with calcium ions, facilitating the formation of hydroxyapatite crystals that are aligned to the c‐axes, parallel to the polydopamine layer as observed in natural hydroxyapatites in mineralized tissues. This universal surface biomineralization can be an innovative foundation for future tissue engineering.  相似文献   

11.
A general and versatile route to prepare hierarchical polymer microparticles via interfacial instabilities of emulsion droplets is demonstrated. Uniform emulsion droplets containing hydrophobic polymers and n‐hexadecanol (HD) are generated through microfluidic devices. When organic solvent diffuses through the aqueous phase and evaporates, shrinking emulsion droplets containing HD and polystyrene (PS) will trigger interfacial instabilities to form microparticles with wrinkled surfaces. Interestingly, surface‐textures of the particles can be accurately tailored from smooth to high textures by varying the HD concentration and/or the rate of solvent evaporation. Moreover, composite particles can be generated by suspending different hydrophobic species to the initial polymer solutions. This versatile approach for preparing particles with highly textured surfaces can be extended to other type of hydrophobic polymers which will find potential applications in the fields of drug delivery, tissue engineering, catalysis, coating, and device fabrication.  相似文献   

12.
A simple and practical “solution‐biphase method” allows the preparation of efficient charge‐transporting 1D nanocrystals with coaxial p–n junctions. It involves gradual diffusion of a top layer of poor solvent (acetonitrile) into a bottom layer of poly(3‐hexyl thiophene)‐b‐poly(2‐vinyl pyridine) (P3HT‐b‐P2VP) conjugated polymers (CPs) and CdSe quantum dots (QDs) dissolved in chloroform. Initial interfacial crystallization‐driven assembly of CPs results in the formation of seeds consisting of dimeric QDs transversely bridged by CPs. Coaxial CPs/QDs hybrid NWs are generated by 1D growth of QDs‐dimeric seeds, enabling tracing of the CPs‐crystallization process via the QDs. Thus, well‐arranged QDs along the longitudinal axis of the NWs infer highly crystalline CPs with edge‐on orientation, as confirmed by electron tomography, UV–vis spectroscopy, and grazing‐incidence wide‐angle X‐ray scattering. This high cristallinity as well as the increased length of the resulting hybrid NWs in solution and the corresponding crystallite size in as‐cast film represent a significant improvement compared to the conventional “one‐pot addition method”. Moreover, although randomly QDs‐attached hybrids of P3HT homopolymer are produced by the solution‐biphase method, branched aggregates with micrometer‐long NW arms are generated from the crystal seeds containing multiple growth facets without precipitate, despite acetonitrile being a nonsolvent.  相似文献   

13.
Hybrid composites obtained upon blending conjugated polymers and colloidal semiconductor nanocrystals are regarded as attractive photo­active materials for optoelectronic applications. Here it is demonstrated that tailoring nanocrystal surface chemistry permits to control non‐covalent and electronic interactions between organic and inorganic components. The pending moieties of organic ligands at the nanocrystal surface are shown to not merely confer colloidal stability while hindering charge separation and transport, but drastically impact morphology of hybrid composites during formation from blend solutions. The relevance of this approach to photovoltaic applications is demonstrated for composites based on poly(3‐hexylthiophene) and lead sulfide nanocrystals, considered as inadequate until this report, which enable the fabrication of hybrid solar cells displaying a power conversion efficiency that reaches 3%. By investigating (quasi)steady‐state and time‐resolved photo‐induced processes in the nanocomposites and their constituents, it is ascertained that electron transfer occurs at the hybrid interface yielding long‐lived separated charge carriers, whereas interfacial hole transfer appears hindered. Here a reliable alternative aiming to gain control over macroscopic optoelectronic properties of polymer/nanocrystal composites by mediating their non‐covalent interactions via ligands' pending moieties is provided, thus opening new possibilities towards efficient solution‐processed hybrid solar cells.  相似文献   

14.
An autonomous self‐healing system, inspired by transportation processes inherent to biology, is described for materials transportation and repair. The selected model system combines inorganic nanoparticles (NPs) on damaged substrates with functional emulsion droplets that pick up the particles from pristine portions of the substrate and deposit them into damaged regions. The droplets are stabilized by polymer surfactants containing phosphorylcholine groups, a polymer composition selected to impart surfactant properties for droplet stabilization as well as fouling resistance to prevent irreversible droplet adsorption on the substrates. Both the NP pickup (cleaning) and drop off (repair) steps are conducted in a system driven by an imposed flow and characterized by fluorescence microscopy. To evaluate and optimize the efficiency of this NP transportation process, the effect of both the chemical composition of the polymer surfactant and the NP surface chemistry is investigated. Interfacial interactions proved enabling for these NP transportation processes, specifically those involving NP/droplet, NP/substrate, and droplet/substrate interactions. Ultimately, droplets capable of both picking up and dropping off NPs are realized by adjusting fluid/fluid and fluid/substrate interactions, with electrostatic interactions between NPs and droplets proving most effective.  相似文献   

15.
In electromagnetic source analysis, it is necessary to determine how many sources are required to describe the electroencephalogram or magnetoencephalogram adequately. Model selection procedures (MSPs) or goodness of fit procedures give an estimate of the required number of sources. Existing and new MSPs are evaluated in different source and noise settings: two sources which are close or distant and noise which is uncorrelated or correlated. The commonly used MSP residual variance is seen to be ineffective, that is it often selects too many sources. Alternatives like the adjusted Hotelling's test, Bayes information criterion and the Wald test on source amplitudes are seen to be effective. The adjusted Hotelling's test is recommended if a conservative approach is taken and MSPs such as Bayes information criterion or the Wald test on source amplitudes are recommended if a more liberal approach is desirable. The MSPs are applied to empirical data (visual evoked fields).  相似文献   

16.
We here report on polymeric solid‐state self‐assembly leading to organization over six length scales, ranging from the molecular scale up to the macroscopic length scale. We combine several concepts, i.e., rod‐like helical and disc‐like liquid crystallinity, block copolymer self‐assembly, DNA‐like interactions to form an ionic polypeptide–nucleotide complex and packing frustration to construct mesoscale fibrils. Ionic complexation of anionic deoxyguanosine monophosphate (dGMP) and triblock coil–rod–coil copolypeptides is used with cationic end blocks and a helical rod‐like midblock. The guanines undergo Hoogsteen pairing to form supramolecular discs, they π‐stack into columns that self‐assemble into hexagonal arrays that are controlled by the end blocks. Packing frustration between the helical rods from the block copolymer midblock and the discotic motif limits the lateral growth of the assembly thus affording mesoscale fibrils, which in turn, form an open fibrillar network. The concepts suggest new rational methodologies to construct structures on multiple length scales in order to tune polymer properties.  相似文献   

17.
A key challenge in advancing the design of hybrid nanostructures (HNs) lies in the difficulty in mastering the principle of selected hybrid formation, which is complicated not only by the size and shape variations of nanoparticles but also by the interfacial phenomena associated with surface ligands. Here this study elaborates the formation mechanism of HNs by a combined experimental and theoretical study employing multiscale simulations and shows how molecular information encoded on particle surface can be transferred into distinct composite patterns. The emergence of different HNs is found to be not only related to ligand binding strengths affecting the reaction kinetics but also the ligand–ligand interactions responsible for phase segregation. Unexpectedly, the sulfidation of Ag nanoparticles co‐stabilized by citrate/gallic acid with different molar ratios constantly produces heterodimers with faster reaction rate than the formation of core–shell structures when they are solely coated by citrate or gallic acid. The surprising result originates from the phase separation of two short surface ligands with large contrast in binding strengths as indicated by photoluminescence spectra and supported by the dissipative particle dynamics simulations. Hierarchical HNs consisting of a heterodimer shell with built‐in hot spots can be further synthesized using Au@Ag core–shell particles with mixed surface layers.  相似文献   

18.
Liquid metals offer unprecedented chemistry. Here it is shown that they can facilitate self‐limiting oxidation processes on their surfaces, which enables the growth of metal oxides that are atomically thin. This claim is exemplified by creating atomically thin hydrated MnO2 using a Galvanic replacement reaction between permanganate ions and a liquid gallium–indium alloy (EGaIn). The “liquid solution”–“liquid metal” process leads to the reduction of the permanganate ions, resulting in the formation of the oxide monolayer at the interface. It is presented that under mechanical agitation liquid metal droplets are established, and simultaneously, hydrated gallium oxides and manganese oxide sheets delaminate themselves from the interfacial boundaries. The produced nanosheets encapsulate a metallic core, which is found to consist of solid indium only, with the full migration of gallium out of the droplets. This process produces core/shell structures, where the shells are made of stacked atomically thin nanosheets. The obtained core/shell structures are found to be an efficient photocatalyst for the degradation of an organic dye under simulated solar irradiation. This study presents a new research direction toward the modification and functionalization of liquid metals through spontaneous interfacial redox reactions, which has implications for many applications beyond photocatalysis.  相似文献   

19.
Nature employs specialized macromolecules to produce highly complex structures and understanding the role of these macromolecules allows us to develop novel materials with interesting properties. Herein, we report the role of modified conjugated polymers in the nucleation, growth, and morphology of calcium carbonate (CaCO3) crystals. In situ incorporation of sulfonated poly(p‐phenylene) (s(PPP)) into a highly oriented calcium carbonate matrix is investigated along with the synthesis and patterning of luminescent CaCO3–PPP hybrid materials. Functionalized PPP with polar and nonpolar groups are used as additives in the mineralization medium. The polymer (P1) with polar groups give iso‐oriented calcite crystals, whereas PPP with an additional alkyl chain (P2) results in vaterite crystals. The crystallization mechanism can be explained based on self‐assembly and aggregation of polymers in an aqueous environment. Such light‐emitting hybrid composites with tunable optical properties are excellent candidates for optoelectronics and biological applications.  相似文献   

20.
The synthesis of large lattice mismatch metal‐semiconductor core–shell hetero‐nanostructures remains challenging, and thus the corresponding optical properties are seldom discussed. Here, we report the gold‐nanorod‐seeded growth of Au–CdS core–shell hetero‐nanorods by employing Ag2S as an interim layer that favors CdS shell formation through a cation‐exchange process, and the subsequent CdS growth, which can form complete core–shell structures with controllable shell thickness. Exciton–plasmon interactions observed in the Au–CdS nanorods induce shell thickness‐tailored and red‐shifted longitudinal surface plasmon resonance and quenched CdS luminescence under ultraviolet light excitation. Furthermore, the Au–CdS nanorods demonstrate an enhanced and plasmon‐governed two‐photon luminescence under near‐infrared pulsed laser excitation. The approach has potential for the preparation of other metal‐semiconductor hetero‐nanomaterials with complete core–shell structures, and these Au–CdS nanorods may open up intriguing new possibilities at the interface of optics and electronics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号