首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Free‐standing colloidal membranes (nanofrits) with varied thickness and nanopore size are fabricated and modified with pH‐responsive poly(2‐(dimethylamino)ethyl methacrylate) brushes. The polymer‐modified nanofrits demonstrate excellent gating behavior for molecular diffusion: in the presence of acid, the diffusion rate of positively charged species significantly decreases. Increasing the polymer length and membrane thickness and decreasing the nanopore size leads to the complete acid‐controlled gating of the membranes.  相似文献   

2.
Achieving cellular internalization and endosomal escape remains a major challenge for many antitumor therapeutics, especially macromolecular drugs. Viral drug carriers are reported for efficient intracellular delivery, but with limited choices of payloads. In this study, a novel polymeric nanoparticle (ADMAP) is developed, resembling the structure and functional features of a virus. ADMAP is synthesized by grafting endosomolytic poly(lauryl methacrylate‐co‐methacrylic acid) on acetalated dextran. The endosomolytic polymer mimics the capsid protein for endosomal escape, and acetalated dextran resembles the viral core for accommodating payloads. After polymer synthesis, the subsequent controlled nanoprecipitation on a microfluidic device yields uniform nanoparticles with high encapsulation efficiency. At late endosomal pH (5.0), the ADMAP particles successfully destabilize endosomal membranes and release the drug payloads synergistically, resulting in a greater therapeutic efficacy compared with that of free anticancer drugs. Further conjugation of a tumor‐penetrating peptide enhances the antitumor efficacy toward 3D spheroids and finally leads to spheroid disintegration. The unique structure along with the synergistic endosomal escape and drug release make ADMAP nanoparticles favorable for intracellular delivery of antitumor therapeutics.  相似文献   

3.
In this study, we report on a novel composite membrane system for pH‐responsive controlled release, which is composed of a porous membrane with linear grafted, positively pH‐responsive polymeric gates acting as functional valves, and a crosslinked, negatively pH‐responsive hydrogel inside the reservoir working as a functional pumping element. The proposed system features a large responsive release rate that goes effectively beyond the limit of concentration‐driven diffusion due to the pumping effects of the negatively pH‐responsive hydrogel inside the reservoir. The pH‐responsive gating membranes were prepared by grafting poly(methacrylic acid) (PMAA) linear chains onto porous polyvinylidene fluoride (PVDF) membrane substrates using a plasma‐graft pore‐filling polymerization, and the crosslinked poly(N,N‐dimethylaminoethyl methacrylate) (PDM) hydrogels were synthesized by free radical polymerization. The volume phase‐transition characteristics of PMAA and PDM were opposite. The proposed system opens new doors for pH‐responsive “smart” or “intelligent” controlled‐release systems, which are highly attractive for drug‐delivery systems, chemical carriers, sensors, and so on.  相似文献   

4.
Gene therapy scientists have developed expression systems for therapeutic transgenes within patients, which must be seamlessly integrated into the patient's physiology by developing sophisticated control mechanisms to titrate expression levels of the transgenes into the therapeutic window. However, despite these efforts, gene‐based medicine still faces security concerns related to the administration of the therapeutic transgene vector. Here, molecular tools developed for therapeutic transgene expression can readily be transferred to materials science to design a humanized drug depot that can be implanted into mice and enables the trigger‐inducible release of a therapeutic protein in response to a small‐molecule inducer. The drug depot is constructed by embedding the vascular endothelial growth factor (VEGF121) as model therapeutic protein into a hydrogel consisting of linear polyacrylamide crosslinked with a homodimeric variant of the human FK‐binding protein 12 (FM), originally developed for gene therapeutic applications, as well as with dimethylsuberimidate. Administrating increasing concentrations of the inducer molecule FK506 triggers the dissociation of FM thereby loosening the hydrogel structure and releasing the VEGF121 payload in a dose‐adjustable manner. Subcutaneous implantation of the drug depot into mice and subsequent administration of the inducer by injection or by oral intake triggers the release of VEGF121 as monitored in the mouse serum. This study is the first demonstration of a stimuli‐responsive hydrogel that can be used in mammals to release a therapeutic protein on demand by the application of a small‐molecule stimulus. This trigger‐inducible release is a starting point for the further development of externally controlled drug depots for patient‐compliant administration of biopharmaceuticals.  相似文献   

5.
Stimuli‐responsive materials are so named because they can alter their physicochemical properties and/or structural conformations in response to specific stimuli. The stimuli can be internal, such as physiological or pathological variations in the target cells/tissues, or external, such as optical and ultrasound radiations. In recent years, these materials have gained increasing interest in biomedical applications due to their potential for spatially and temporally controlled release of theranostic agents in response to the specific stimuli. This article highlights several recent advances in the development of such materials, with a focus on their molecular designs and formulations. The future of stimuli‐responsive materials will also be explored, including combination with molecular imaging probes and targeting moieties, which could enable simultaneous diagnosis and treatment of a specific disease, as well as multi‐functionality and responsiveness to multiple stimuli, all important in overcoming intrinsic biological barriers and increasing clinical viability.  相似文献   

6.
The design and development of water dispersible, pH responsive peptide mimic shell cross‐linked magnetic nanocarriers (PMNCs) using a facile soft‐chemical approach is reported. These nanocarriers have an average size about 10 nm, are resistant to protein adsorption in physiological medium, and transform from a negatively charged to a positively charged form in the acidic environment. The terminal amino acid on the shell of the magnetic nanocarriers allows us to create functionalized exteriors with high densities of organic moieties (both amine and carboxyl) for conjugation of drug molecules. The drug‐loading efficiency of the nanocarriers is investigated using doxorubicin hydrochloride (DOX) as a model drug to evaluate their potential as a carrier system. Results show high loading affinity of nanocarriers for anticancer drug, their sustained release profile, magnetic‐field‐induced heating, and substantial cellular internalization. Moreover, the enhanced toxicity to tumor cells by DOX‐loaded PMNCs (DOX‐PMNCs) under an AC magntic field suggest their potential for combination therapy involving hyperthermia and chemotherapy.  相似文献   

7.
8.
Novel multi‐stimuli‐responsive microcapsules with adjustable controlled‐release characteristics are prepared by a microfluidic technique. The proposed microcapsules are composed of crosslinked chitosan acting as pH‐responsive capsule membrane, embedded magnetic nanoparticles to realize “site‐specific targeting”, and embedded temperature‐responsive sub‐microspheres serving as “micro‐valves”. By applying an external magnetic field, the prepared smart microcapsules can achieve targeting aggregation at specific sites. Due to acid‐induced swelling of the capsule membranes, the microcapsules exhibit higher release rate at specific acidic sites compared to that at normal sites with physiological pH. More importantly, through controlling the hydrodynamic size of sub‐microsphere “micro‐valves” by regulating the environment temperature, the release rate of drug molecules from the microcapsules can be flexibly adjusted. This kind of multi‐stimuli‐responsive microcapsules with site‐specific targeting and adjustable controlled‐release characteristics provides a new mode for designing “intelligent” controlled‐release systems and is expected to realize more rational drug administration.  相似文献   

9.
Advances in thin‐film fabrication are integral to enhancing the power of microelectronics while fabrication methods that allow the integration of biological molecules are enabling advances in bioelectronics. A thin‐film‐fabrication method that further extends the integration of biology with microelectronics by allowing living biological systems to be assembled, cultured, and analyzed on‐chip with the aid of localized electrical signals is described. Specifically, the blending of two stimuli‐responsive film‐forming polysaccharides for electroaddressing is reported. The first, alginate, can electrodeposit by undergoing a localized sol–gel transition in response to electrode‐imposed anodic signals. The second, agarose, can be co‐deposited with alginate and forms a gel upon a temperature reduction. Electrodeposition of this dual polysaccharide network is observed to be a simple, rapid, and spatially selective means for assembly. The bioprocessing capabilities are examined by co‐depositing a yeast clone engineered to display a variable lymphocyte receptor protein on the cell surface. Results demonstrate the in‐film expansion and induction of this cell population. Analysis of the cells' surface proteins is achieved by the electrophoretic delivery of immunoreagents into the film. These results demonstrate a simple and benign means to electroaddress hydrogel films for in‐film bioprocessing and immunoanalysis.  相似文献   

10.
Far‐field scattering of randomly deposited Au nanoparticles (NPs) is demonstrated as a physically unclonable optical function for anti‐counterfeit applications in which the scattering patterns are easily produced yet impractical to replicate. Colloidal metal NPs are superb components for nanoscale labels owing to their small dimensions and intense far‐field scattering visible at wavelengths that depend on colloidal size, shape, composition, and their local environment. The feasibility of Au NP depositions as nanofingerprints is presented using a simple pattern matching algorithm. These NPs offer extended functionality as environmental sensors. Taking advantage of the local refractive index dependent scattering wavelengths of metal NPs, a detectable color change is also demonstrated from a nanofingerprint comprised of Au and Ag NPs when placed in media with different refractive index. The facile deposition method coupled with the intense scattering and optical response of metal NPs provides physically unclonable tags (nanofingerprints) with the ability to serve as tamper‐evident and aging labels.  相似文献   

11.
Double stimuli‐responsive membranes are prepared by modification of pH‐sensitive integral asymmetric polystyrene‐b‐poly(4‐vinylpyridine) (PS‐b‐P4VP) diblock copolymer membranes with temperature‐responsive poly(N‐isopropylacrylamide) (pNIPAM) by a surface linking reaction. PS‐b‐P4VP membranes are first functionalized with a mild mussel‐inspired polydopamine coating and then reacted via Michael addition with an amine‐terminated pNIPAM‐NH2 under slightly basic conditions. The membranes are thoroughly characterized by nuclear magnetic resonance (1H‐NMR), Fourier transform infrared spectroscopy and X‐ray‐induced photoelectron spectroscopy. Additionally dynamic contact angle measurements are performed comparing the sinking rate of water droplets at different temperatures. The pH‐ and thermo‐double sensitivities of the modified membranes are proven by determining the water flux under different temperature and pH conditions.  相似文献   

12.
Wet‐spun stimuli‐responsive composite fibers made of covalently crosslinked alginate with a high concentration of single‐walled carbon nanotubes (SWCNTs) are electroconductive and sensitive to humidity, pH, and ionic strength, due to pH‐tunable water absorbing properties of the covalently crosslinked alginate. The conductivity depends on the material swelling in humid atmosphere and aqueous solutions: the greater the swelling, the smaller is the electrical conductivity. The covalently crosslinked fibers reversibly deform during the swelling/shrinking. In the swollen state, the fibers are less conductive, while they return to the same level of conductivity after shrinking. This unique reversible change of electroconductivity of the SWCNT‐alginate fibers is due to the elastic deformation of the alginate network in the area of electrical contacts between SWCNT bundles arrested in the alginate matrix. Fibers of this kind can be used as a simple, robust, disposable, and biocompatible platform for electrotextiles, biosensors, and flexible electronics in biomedical and biotechnological applications.  相似文献   

13.
The functionalization of amphiphilic polymer co‐networks with light‐responsive spiropyran and spirooxazine derivatives leads to a new type of light‐responsive materials. The material consisting of hydrophilic nanochannels shows desirable properties such as light‐responsive permeability changes of aqueous caffeine solutions, an exceptional repeatability of the photochromism, and tunable basic permeability rates. The versatility of the system is demonstrated by using different functionalization routes such as copolymerization of light‐responsive monomers or crosslinker as well as postmodification of the preformed amphiphilic network. Moreover, light‐responsive spirobenzopyran and novel spirooxazine derivatives are synthesized, which changes the properties of the light‐responsive membranes after inclusion into the amphiphilic co‐networks. Finally, the permeability of the delivery membrane can be tailored to match the properties of porcine skin, an in vitro model of human neonatal skin. One possible application might be the use of the light‐responsive membranes as key‐unit of a transdermal caffeine‐delivery system for preterm neonates.  相似文献   

14.
Drug leakage in blood circulation is generally a serious concern to polymersomes when loading water‐soluble chemotherapeutics. If packing density of polymersome membrane is strengthened, premature drug release will be inhibited. Therefore, synthesis of a series of amphiphilic polyphosphazenes (PNPs) with 2‐diethylaminoethyl 4‐aminobenzoate (DEAB) as hydrophobic side groups and amino‐terminal poly(ethylene glycol) (NH2‐PEG2000) as hydrophilic chains is presented. By controlling the ratio of DEAB to NH2‐PEG2000, the optimal PNP‐3 is screened to ensure polymersome formation and high loading of doxorubicin hydrochloride (DOX·HCl). In situ generation method is initially employed to introduce gold nanoparticles (AuNPs) into vesicles' lamella, which can homogeneously distribute among DEAB sides via coordination interaction and act as inorganic cross‐linkers to aggregate polymer chains. Drug leakage of resultant AuNP hybrid PNP‐3 polymersome (IAuPNP‐3) at pH 7.4 is effectively alleviated and the systemic circulation time of DOX·HCl in mice is obviously prolonged. Besides, pH‐responsive drug release, due to the protonation of tertiary amine in DEAB, contributes to fast intracellular action. Based on the cooperation of these functions, DOX·HCl‐loaded IAuPNP‐3 finally achieves the highest in vivo antitumor efficacy compared with free DOX·HCl, drug‐loaded PNP, or EAuPNP prepared by prepreparation AuNPs method.  相似文献   

15.
Efficient and safe drug delivery across the blood‐brain barrier (BBB) remains one of the major challenges of biomedical and (nano‐) pharmaceutical research. Here, it is demonstrated that poly(butyl cyanoacrylate)‐based microbubbles (MB), carrying ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles within their shell, can be used to mediate and monitor BBB permeation. Upon exposure to transcranial ultrasound pulses, USPIO‐MB are destroyed, resulting in acoustic forces inducing vessel permeability. At the same time, USPIO are released from the MB shell, they extravasate across the permeabilized BBB and they accumulate in extravascular brain tissue, thereby providing non‐invasive R 2*‐based magnetic resonance imaging information on the extent of BBB opening. Quantitative changes in R 2* relaxometry are in good agreement with 2D and 3D microscopy results on the extravascular deposition of the macromolecular model drug fluorescein isothiocyanate (FITC)‐dextran into the brain. Such theranostic materials and methods are considered to be useful for mediating and monitoring drug delivery across the BBB and for enabling safe and efficient treatment of CNS disorders.  相似文献   

16.
Novel poly(N‐isopropylacrylamide)‐clay (PNIPAM‐clay) nanocomposite (NC) hydrogels with both excellent responsive bending and elastic properties are developed as temperature‐controlled manipulators. The PNIPAM‐clay NC structure provides the hydrogel with excellent mechanical property, and the thermoresponsive bending property of the PNIPAM‐clay NC hydrogel is achieved by designing an asymmetrical distribution of nanoclays across the hydrogel thickness. The hydrogel is simply fabricated by a two‐step photo polymerization. The thermoresponsive bending property of the PNIPAM‐clay NC hydrogel is resulted from the unequal forces generated by the thermoinduced asynchronous shrinkage of hydrogel layers with different clay contents. The thermoresponsive bending direction and degree of the PNIPAM‐clay NC hydrogel can be adjusted by controlling the thickness ratio of the hydrogel layers with different clay contents. The prepared PNIPAM‐clay NC hydrogels exhibit rapid, reversible, and repeatable thermoresponsive bending/unbending characteristics upon heating and cooling. The proposed PNIPAM‐clay NC hydrogels with excellent responsive bending property are demonstrated as temperature‐controlled manipulators for various applications including encapsulation, capture, and transportation of targeted objects. They are highly attractive material candidates for stimuli‐responsive “smart” soft robots in myriad fields such as manipulators, grippers, and cantilever sensors.  相似文献   

17.
18.
Smart pH‐responsive surfaces that could autonomously induce unidirectional wetting of acid and base with reversed directions are fabricated. The smart surfaces, consisting of chemistry‐asymmetric “Janus” silicon cylinder arrays (Si‐CAs), are prepared by precise modification of functional groups on each cylinder unit. Herein, amino and carboxyl groups are chosen as typical pH‐responsive groups, owing to their protonation/deprotonation effect in response to pH of the contacted aqueous solution. One side of the Si‐CAs is modified by poly(2‐(dimethylamino)ethyl methacrylate), while the other side is modified by mixed self‐assembled monolayers of 1‐dodecanethiol and 11‐mercaptoundecanoic acid. On such surfaces, it is observed that acid and base wet in a unidirectional manner toward corresponding directions that are modified by amino or carboxyl groups, which is caused by asynchronous change of wetting property on two sides of the asymmetric structures. The as‐prepared Janus surfaces could regulate the wetting behavior of acid and base and could direct unidirectional wetting of water with reversed directions when the surfaces are treated by strong acid or base. Due to the excellent response capability, the smart surfaces are potential candidates to be applied in sensors, microfluidics, oil/water separation, and smart interfacial design.  相似文献   

19.
A series of synthetic polymer bioconjugate hybrid materials consisting of poly(2‐hydroxyethyl methacrylate) (p(HEMA)) and poly(l‐ histidine) (p(His)) are synthesized by combining atom transfer radical polymerization of HEMA with ring opening polymerization of benzyl‐N‐carboxy‐L ‐histidine anhydride. The resulting biocompatible and membranolytic p(HEMA)25b‐p(His)n (n = 15, 25, 35, and 45) polymers are investigated for their use as pH‐sensitive drug‐carrier for tumor targeting. Doxorubicin (Dox) is encapsulated in nanosized micelles fabricated by a self‐assembly process and delivered under different pH conditions. Micelle size is characterized by dynamic light scattering (DLS) and transmission electron microscopy (TEM) observations. Dox release is investigated according to pH, demonstrating the release is sensitive to pH. Antitumor activity of the released Dox is assessed using the HCT 116 human colon carcinoma cell line. Dox released from the p(HEMA)‐b‐p(His) micelles remains biologically active and has the dose‐dependent capability to kill cancer cells at acidic pH. The p(HEMA)‐b‐p(His) hybrid materials are capable of self‐assembling into nanomicelles and effectively encapsulating the chemotherapeutic agent Dox, which allows them to serve as suitable carriers of drug molecules for tumor targeting.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号