首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, the H2O co-gasification of petroleum coke (PC) with low (sulfur and V2O5 contents) and different five kinds of biomass wastes were conducted using a thermogravimetric analyzer (TGA). The biomass used were the agricultural wastes (rice husk (RH), rice stalk (RS), and cotton straw (CS)) and by-product wastes (sawdust (SD) and sugar cane bagasse (SCB)). Their reactivities, kinetics and thermodynamics parameters were investigated and compared in detail as well as a synergistic effect during co-gasification of the blends. The kinetics and thermodynamics parameters were estimated by using the homogeneous model (HM) or the first-order chemical reaction (O1) and shrinking core models (SCM) or Phase boundary controlled reactions (R2 and R3). It was found that the biomass wastes was significantly improved the blends gasification reactivity. The obvious significant synergistic effect was observed in the char gasification stage of the blends compared with the pyrolysis stage. Compared to other models the phase boundary controlled reaction (R2) was found to be the best model to predict the experimental data of the co-gasification process. For both reaction stages of single fuels, SD showed the lowest values of activation energy and thermodynamics parameters. The blends of PC: SD and PC: CS provided the lowest activation energy and thermodynamics parameters for the pyrolysis stage and the char gasification stage, respectively. The co-gasification of PC and biomass wastes are a promising technique for the efficient utilization of PC and biomass wastes.  相似文献   

2.
Co-gasification is a promising approach to the clean and high-efficiency co-utilization of biomass and coal with syngas (H2+CO) production. Gasification reactivity is an important factor influencing the operation conditions choice, carbon conversion efficiency and syngas production performance. Coal-biomass interaction during co-gasification will directly result in the synergy behavior of different forms and intensities on co-gasification reactivity. Due to the fuel origin diversity, structural property difference and reaction process complexity of biomass and coal, a clear understanding of reactivity characteristics and synergy behavior of co-gasification is very essential for revealing co-gasification reaction mechanism and providing theoretical support for actual application. In this paper, the influences factors (such as feedstock type, blended ratio, gasification temperature, co-pyrolysis process, gasification reactor and biomass pretreatment) for co-gasification reactivity and the synergy behavior on co-gasification reactivity are summarized in details, and non-catalytic/catalytic synergy mechanisms for co-gasification are discussed. Previous researchers have acquired a plenty of meaning data, providing important reference for industrial application of co-gasification technology. However, volatile matter-char interaction mechanism during co-pyrolysis was still unclear, AAEM migration and transformation route during co-gasification are lack of in-situ analysis, transfer route and interaction of free radicals during co-gasification process were unknown, and co-gasification kinetics model containing dynamic synergistic/inhibition factors hasn't been established.  相似文献   

3.
Co-pyrolysis of two different types of biomass among apple tree branch (ATB), knotweed stem (KWS), seaweed (SW) and rice straw (RSt) was conducted to obtain co-pyrolysis char (co-char), and then the steam gasification of those co-chars was compared with the steam co-gasification of the physically mixed individual biochars to investigate the synergetic effect resulted from alkali and alkali earth metal (AAEM) in each biomass involved. It is found that the silica species in the RSt had negative effect on the activity of co-char due to the formation of alkali silicate compounds. However, combination of RSt with some non-woody biomass such as SW also showed promoting effect. In particular, the gasification of the co-char from the combination of various biomass with low or no silica content showed improved gasification efficiencies due to the synergetic effect AAEM species in the co-char from the different biomass. Therefore, the biomass selection should play a significant role in the co-pyrolysis of different biomass in the two-stage gasification system.  相似文献   

4.
A comprehensive mathematical model to simulate a serial composite process for biomass and coal co-gasification has been built. The process is divided into combustion stage and gasification stage in the same gasifier, it is a new process for the co-gasification of biomass and coal. The model is based on reaction kinetic, hydrodynamics, mass and energy balances, it is a one-dimensional, K-L three-phase, unsteady state model. The model is divided into two sub-models, one is the combustion sub-model, the other is the coal-biomass serial gasification sub-model. Combustion sub-model includes coal pyrolysis, dense phase combustion, and dilute phase combustion model. Gasification sub-model includes biomass pyrolysis, dense phase coal gasification, dense phase biomass gasification, and dilute phase gasification model. The model studies the effects of key parameters on gasification properties, including gasification temperature, S/B, B/C, and predicts the composition of product gas and gas calorific value along the reactor's axis at different time. The model predictions agree well with experimental results and can be used to study and optimize the operation of the process.  相似文献   

5.
生物质气化影响因素分析   总被引:8,自引:1,他引:8  
阐述了生物质定义、特点及生物质气化原理,综述了生物质在流化床气化中,气化剂、原料粒径、温度、压力、原料前处理等操作条件对生物质气化产品组成的影响,讨论了煤与生物质共气化的协同作用,指出了生物质流化床气化的技术关键。  相似文献   

6.
Computational Fluid Dynamics-Discrete Element Method (CFD-DEM) is employed to describe the co-gasification of biomass and coal in bubbling fluidized bed coupled with chemical reaction kinetic model. Six sets of simulations are set up to study the effect of blend ratio on the amount of gasification products compared with experiments. The calorific value of syngas, carbon conversion efficiency, hydrogen conversion efficiency and cold gas efficiency are calculated. Compared with the separate gasification, the hydrogen efficiency and cold gas efficiency in the co-gasification are enhanced. When biomass accounts for 75%, the contents of CO gas and CO2 gas are the lowest, while the contents of H2 gas and CH4 gas are the highest. The high calorific value, carbon conversion efficiency and hydrogen conversion efficiency reach the maximum under this blend ratio. The cold gas efficiency is not obviously affected by the blend ratio, and reaches the maximum when the biomass content is 50%.  相似文献   

7.
生物质与塑料共热解是一种非常有效的生物质利用方法之一,但由于生物质结构的复杂性,共热解过程的机理尚不明晰。木质素是生物质的主要组分之一,本文通过热重-质谱联用仪和裂解器-气相色谱质谱仪研究其与高密度聚乙烯共热解过程,获取共热解特性及热解产物分布特性,以揭示共热解过程机制。结果显示,木质素与高密度聚乙烯共热解过程存在协同效应,使得热解失重速率加快,热解固体残渣含量减少。共热解过程有利于CH4、H2O、CO和C2H4的生成,抑制CO2的生成。同时,酚类、醇类和糖类等含氧化合物产量减少,烷烃和烯烃类化合物产量增加。结果表明,共热解过程会发生氢转移现象,氢与木质素衍生热解产物结合发生反应,从而抑制含氧化合物的生成,促进烷烃类和烯烃类化合物生成。  相似文献   

8.
A gasification pilot plant was built up in order to investigate the influence of both feedstock type and co-gasification on the distribution and composition of the products. The results showed that at the same process condition, different feedstocks could result in different product yields. For instance, the highest gas yield was obtained from tire gasification, while the lowest one belonged to weed gasification. The characterization of the products showed the presence of different components and functionalities in the samples produced. In addition, the co-gasification of the feedstocks resulted in the products with different specifications than single feeding, proving the existence of different reaction pathways. This means that feedstocks and their derivatives could interact with each other and resulted in nonproportional yields and composition for the char, tar, and gaseous products in comparison with the products from the gasification of the single feedstocks. As an example, the tar from co-gasification had a lower content of acids but a higher content of amines and amides. This confirmed that co-gasification influenced the reaction network significantly, impacting the formation of gases, tar, and char, originated from the cross-interaction among the reaction intermediates derived from the pyrolysis/gasification of the various feedstocks.  相似文献   

9.
To utilize low-rank coal and biomass in a highly efficient and environmental-friendly manner, a co-pyrolysis system coupled with char gasification is investigated. This system has five main units, namely, the drying and mixing, pyrolysis, cooling and separation, combustion, and gasification units, which are simulated by ASPEN plus based on experimental data. Results show that 37% of the pyrolysis char is burned to supply heat for pyrolysis and drying processes based on cascade utilization of heat energy, whereas the rest is sent to a gasifier. The sensitivity analysis is performed to investigate the impacts of steam and O2 injection on gas composition, gasification temperature, carbon conversion efficiency, heating value of gas during gasification, and gas production efficiency. The fractions of H2, CH4, CO, and CO2 demonstrate diverse variation tendencies with an increasing equivalence ratio and steam-to-char (S/C) ratio. However, carbon conversion efficiency reaches its peak of 99.91% when the equivalence ratio is approximately 4 regardless of S/C ratio. An equivalence ratio of 4 and S/C ratio of 0.15 are used as decent examples to calculate the mass balance and to simulate the overall system. Results show that 1000 kg/h coal and 500 kg/h biomass can produce 285.83 m3/h pyrolysis gas and 2580.78 m3/h gasification gas with low heating values of 8.20 and 9.746 MJ/m3, respectively.  相似文献   

10.
The main results of the experimental work on steam co-gasification of Polish hard coal and Salix Viminalis blends in a fixed bed reactor under atmospheric pressure and at the temperature of 700, 800 and 900 °C are presented in the paper. The effectiveness of co-gasification of coal/biomass blends of 20, 40, 60 and 80% w/w biomass content was tested in terms of gas flows, composition, carbon conversion and chars reactivity. A synergy effect in the co-gasification tests, consisting in increase in the volume of hydrogen produced, when compared to the tests of coal and biomass gasification, was observed at all tested temperatures. The observed synergy effect was attributed to the catalytic effect of K2O present in blend ash (6-10% wt). Moreover, in co-gasification of blends of 20 and 40% w/w biomass content, increase in the total gas yield was observed, when compared to the tests of coal and biomass gasification at all tested temperatures. In tests of co-gasification of blends of higher biomass content (i.e. 60 and 80% w/w), a slight decrease in the total volume of product gas was observed, when compared to the tests of coal and biomass gasification. Nevertheless, higher ratio of biomass in co-gasification makes it still an attractive option in terms of CO2 emission reduction and increase in hydrogen production.  相似文献   

11.
Supercritical gasification is a promising technology for the utilisation of biomass and plastic wastes. To further understand the synergistic effect of lignin and plastic co-gasification under the influence of supercritical water, the microscopic mechanism of the co-gasification of lignin and plastic in supercritical water was studied using reactive molecular dynamics simulations. The influence of temperature on the evolution behaviour of the carbon chains was also analysed. At low temperatures (≤2000 K), lignin cracks slowly, whereas most polyethylene does not crack, and gas production yield is low. The quantity of supercritical water participating in gasification increases with increasing temperature, but there exists an upper limit to this increase. At high temperatures (3000 K–5000 K), the main gasification products include H2, CH4, CO, and CO2.  相似文献   

12.
The release behavior of biomass and coal in the co-pyrolysis process was investigated. The release characteristics of the small molecules from 100 to 1000 °C were researched by TG-MS at the heating rate of 30 °C/min. The pyrolysis products during the co-pyrolysis process were compared with that in the separate pyrolysis process. It is found that the changes of pyrolysis products in the co-pyrolysis process are similar to that in the separate pyrolysis process. The main pyrolysis products of the biomass are released at the temperature lower than 500 °C. Some of the small molecules of Shenfu coal release at the temperature higher than 900 °C. The yields of aromatic compounds in biomasses are lower than that in Shenfu coal. In addition, most of the raw materials are pyrolyzed independently during the co-pyrolysis process. The differences between the experimental values and calculated values are slightly. With the addition of biomass, the content variations of aromatic compounds are not significant.  相似文献   

13.
Hydrogen can be produced from biomass materials via thermochemical conversion processes such as pyrolysis, gasification, steam gasification, steam-reforming, and supercritical water gasification (SCWG) of biomass. In general, the total hydrogen-rich gaseous products increased with increasing pyrolysis temperature for the biomass sample. The aim of gasification is to obtain a synthesis gas (bio-syngas) including mainly H2 and CO. Steam reforming is a method of producing hydrogen-rich gas from biomass. Hydrothermal gasification in supercritical water medium has become a promising technique to produce hydrogen from biomass with high efficiency. Hydrogen production by biomass gasification in the supercritical water (SCW) is a promising technology for utilizing wet biomass. The effect of initial moisture content of biomass on the yields of hydrogen is good.  相似文献   

14.
《能源学会志》2020,93(3):1074-1082
A dual loop gasification system (DLG) has been previously proposed to facilitate tar destruction and H2-rich gas production in steam gasification of biomass. To sustain the process auto-thermal, however, additional fuel with higher carbon content has to be supplied. Co-gasification of biomass in conjunction with coal is a preferred option. Herein, the heat balance of the steam co-gasification of pine sawdust and Shenmu bituminous coal in the DLG has been analyzed to verify the feasibility of the process with the help of Aspen Plus. Upon which, the co-gasification experiments in the DLG have been investigated with olivine as both solid heat carriers and in-situ tar destruction catalysts. The simulation results show that the self-heating of the DLG in the co-gasification is achieved at the coal blending ratio of 28%, gasification circulation ratio of 19 and reforming circulation ratio of 20 when the gasifier temperature 800 °C, reforming temperature 850 °C, combustor temperature 920 °C and S/C 1.1. The co-gasification experiments indicate that the tar is efficiently destructed in the DLG at the optimized reformer temperature and with olivine catalysts.  相似文献   

15.
The addition of plastics to the steam pyrolysis/gasification of wood sawdust with and without a Ni/Al2O3 catalyst was investigated in order to increase the production of hydrogen in the gaseous stream. To study the influence of the biomass/plastic ratio in the initial feedstock, 5, 10 and 20 wt.% of polypropylene was introduced with the wood in the pyrolysis reactor. To investigate the effect of plastic type, a blend of 80 wt.% of biomass and 20 wt.% of either polypropylene, high density polyethylene, polystyrene or a mixture of real world plastics was fed into the reactor. The results showed that a higher gas yield (56.9 wt.%) and a higher hydrogen concentration and production (36.1 vol.% and 10.98 mmol H2 g−1 sample, respectively) were obtained in the gaseous fraction when 20 wt.% of polypropylene was mixed with the biomass. This significant improvement in gas and hydrogen yield was attributed to synergetic effects between intermediate species generated via co-pyrolysis. The Ni/Al2O3 catalyst dramatically improved the gas yield as well as the hydrogen concentration and production due to the enhancement of water gas shift and steam reforming reactions. Very low amounts of coke (less than 1 wt.% in all cases) were formed on the catalyst during reaction, with the deposited carbonaceous material being of the filamentous type. The Ni/Al2O3 catalyst was shown to be effective for hydrogen production in the co-pyrolysis/gasification process of wood sawdust and plastics.  相似文献   

16.
In this work, the thermal conversion characteristics, interactive effects and reaction kinetics during co-pyrolysis of textile dyeing sludge (TDS) and four typical lignocellulosic biomasses (peanut vine – PV, wheat straw – WS, cotton stalks – CS and sawdust – SD) were comparatively investigated based on thermogravimetric analysis. The results indicated that the more contents of cellulose and hemicelluloses in the raw materials, the larger pyrolysis characteristic index D was. Meanwhile, the type of biomass played an important role on the interactive effect during co-pyrolysis process, which could be inhibitive and accelerative. Moreover, CS pyrolysis with the simulation ash showed that the metallic oxide in TDS ash would react with the residue carbon to increase the mass loss at the final stage. According to kinetic analysis result, the reaction mechanism of TDS, biomasses and their blends can be well predicted by the reaction order model and the diffusion models, i.e. 0, 3rd and 1-D model. The kinetic analysis also suggests TDS co-pyrolysis with biomass could reduce the theoretical activation energy for thermochemical conversion. About 50% CS content was turned out to be the optimal additive for the co-pyrolysis.  相似文献   

17.
In order to produce high-quality bio-oils and syngas from biomass, a novel pyrolysis approach based on the chemical looping concept, namely chemical looping pyrolysis (CLPy), was proposed. In the current work, thermodynamic feasibility study and experimental investigations of the proposed CLPy with calcium-ferrite oxygen carriers and Nannochloropsis sp. microalgal biomass were conducted. The results suggested that the reduced calcium-ferrite oxygen carrier facilitated the denitrification, ketonization, and hydrodeoxygenation (HDO) of bio-oils during the pyrolysis stage. Since large amounts of oxygen in bio-oils were transferred to the reduced oxygen carrier, the heating value of bio-oils was remarkably increased up to 34.2 MJ/kg and 36.0 MJ/kg by employing the reduced CaFe2O4 and Ca2Fe2O5 oxygen carrier, respectively. In addition, a high H2 content of 50% in the pyrolysis gas was observed at the optimal pyrolysis temperature. In the gasification stage, the production of high-quality syngas was achieved. The content of H2 accounted for up to 70% of the gasification products when taking steam as gasifying agent, while that of CO was composed of 66% without the use of a gasifying agent. Moreover, the oxygen carrier was reduced to its reduction state, available for the next loop. In summary, CLPy proposed in this work involves the continuous transference of the oxygen from bio-oils to syngas by an oxygen carrier and provides a brand-new approach for the comprehensive utilization of biomass.  相似文献   

18.
A novel two-step sorption enhanced staged gasification of biomass for H2 production was proposed and studied using Aspen Plus software. An equilibrium model based on Gibbs free energy minimization was developed and validated. The results showed that the two-step process was more advantageous for H2 production compared with the conventional steam gasification and the one-step process. The independent control of each stage could realize a high temperature steam gasification in the first stage and a subsequent lower temperature steam reforming in the second stage, which thus promoted the gasification of biomass and benefited the water gas shift (WGS) reaction to produce more H2. Meanwhile, the in situ CO2 absorption of CaO in the second stage could enrich the H2 concentration in the product gas, and also further shifted the WGS reaction equilibrium to convert more CO to H2. With further introduction of catalyst for steam methane reforming (SMR), high-purity H2 with the concentration of 99.7 vol% and yield of 142.8 g/kg daf biomass could be achieved.  相似文献   

19.
Biomass chemical looping gasification (BCLG), which employs oxygen carriers (OCs) as the gasification agent, is drawing more attention for its low cost and environmental friendliness. However, the complex products of biomass pyrolysis and the reactions between OCs and the pyrolysis products constrain its development. In this study, MFe2O4 (M = Cu, Ba, Ni and Co) ferrites synthesized via the sol-gel method were investigated as OCs in BCLG for hydrogen-rich syngas production. The properties of the as-prepared and spent OCs were characterized by X-ray diffraction (XRD), H2-temperature programmed reduction (TPR), scanning electron microscopy (SEM), and automatic surface area porosimetry (BET). The three-phase products (char, pyrolysis gas and toluene) derived from biomass pyrolysis were employed as the reactants to investigate the reactivity of the ferrites. Then, BCLG experiments using biomass were conducted on the four ferrites to further determine their performance. The characterization results suggested that the four ferrites are all attractive for the chemical looping process, exhibiting good oxygen transferability and wide distributions of metal cations because of their metal synergistic effects in the spine structure. Reactions with pyrolysis gas and biomass char indicated that BaFe2O4 has a higher reactivity via a solid-solid reaction but a lower reactivity with pyrolysis gas, which make it very favorable for the production of hydrogen-rich syngas. Furthermore, BaFe2O4 showed excellent performance for toluene catalytic cracking with small amounts of carbon deposition. The synergetic effects between Ba and Fe metals considerably enhanced selective oxidation to produce 26.72% more H2 than CoFe2O4 and 13.79% more H2 than NiFe2O4 and CuFe2O4 for biomass gasification. The hydrogen yield produced by BaFe2O4 with the assistance of steam for biomass gasification can reach 41.8 mol/kg of biomass.  相似文献   

20.
The main objective of this work is to investigate the syngas production from petrochemical sludge (PS) and sawdust (SD) co-pyrolysis. In this study, the pyrolysis experiments of PS, SD and their blends were carried out in TG-MS analyzer and fixed bed reactor. The effects of pyrolysis temperature and interactions between PS and SD on gas evolution behavior, products distribution and gas compositions were investigated. The PS pyrolysis result showed high temperature favored the gas production and there was a distinct increase in gas yield when temperature exceeded 700 °C. The Fe3O4 in solid was reduced by carbon with the generation of CO and CO2, leading to the increase of gas yield. During the co-pyrolysis process, significant interactions between PS and SD were observed. SD addition promoted the increase of gas yield, as well as the generation of H2 and CO. In addition, the activation energy during co-pyrolysis process was reduced due to the interaction. The strongest accelerative effect on gas yield appeared at 60 wt% SD, under which the gas yield was 39.59 wt%, H2+CO content was 61.34 vol%, LHV was 13.39 MJ/Nm3. It was concluded that SD addition was conductive to syngas production from PS pyrolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号