首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To study the release and transformation of fuel K during rapid pyrolysis of biomass, wheat straw, corn stalk and rice hull are pyrolyzed in a fixed-bed reactor system during 400–1000 °C, and weight measurement, elemental composition analysis, and chemical fractionation analysis are performed. The effects of fuel type, pyrolysis temperature, co-pyrolysis of different fuels, and water washing pretreatment are discussed. The results show that for all biomass fuels, the released K is far less than the water-soluble K and a sudden increase occurs in the fraction of ion-exchangeable K at 400 °C, whereas a significant increase happens in the fraction of insoluble K above 800 °C. Wheat straw releases less than 5% of K at 400 and 500 °C. As temperature rises, the K release increases abruptly and around 40% of K enters the gas phase at 1000 °C. Rice hull has a slow and linear K release with increasing pyrolysis temperature. Corn stalk has the lowest K release during 400–800 °C. Co-pyrolysis of wheat straw and rice hull reduce the K release at 1000 °C, and the biggest decrement is 0.76 mg g?1. Water washing removes all the water-soluble K of corn stalk and part of ion-exchangeable K enters the gas phase during pyrolysis of the washed sample. Water washing decreases the K release from 2.77 to 0.18 mg g?1 at 1000 °C.  相似文献   

2.
基于流化床的生物质燃烧技术应用日益广泛.生物质燃料流化床的缺点是容易产生床体结焦.灰的组分和生物质燃料中的硫、氯是影响流化床锅炉烧结倾向、锅炉污染速率、灰沉积过程、结焦和过热器腐蚀的主要因素.以灰成分为基础划分生物质燃料,可分为具有显著的不同燃烧特性的3类.在实践的基础上,阐述了各类生物质燃料及其灰分特性,以及在流化床...  相似文献   

3.
Ash effects during combustion of lignite/biomass blends in fluidized bed   总被引:2,自引:0,他引:2  
Aiming at investigating the role of minerals in evaluating co-firing applications of low rank coals and biomass materials, agricultural residues characteristic of the Mediterranean countries, one lignite and their blends with biomass proportions up to 20% wt, were burned in a lab-scale fluidized bed facility. Fly ashes and bed material were characterized in terms of mineralogical, chemical and morphological analyses and the slagging/fouling and agglomeration propensities were determined.The results showed that combustion of each fuel alone could provoke medium or high deposition problems. Combustion of raw fuels produced fly ashes rich in Ca, Si and Fe minerals, as well as K and Na minerals in the case of biomass samples. However, blending of the fuels resulted in a reduction of Ca, Fe, K and Na, while an increase of Si and Al elements in the fly ashes as compared to lignite combustion, suggesting lower deposition and corrosion problems in boilers firing these mixtures. The use of bauxite as an additive enriched bottom ash in calcium compounds. Under the conditions of the combustion tests, no signs of ash deposition or bed agglomeration were noticed.  相似文献   

4.
选用松木、杨木、玉米秸秆和稻壳4种生物质为原料,采用3%(体积分数)乙酸溶液进行洗涤除灰后,进行快速热解实验,对比研究酸洗预处理对4种生物质热解焦物理化学特性的影响。结果表明:乙酸酸洗可有效去除松木、杨木、玉米秸秆和稻壳灰分中的大部分无机元素,从而促进热解过程中挥发分的释放、显著改善热解焦的表面化学特性。酸洗可促进热解焦孔隙结构的形成,提高比表面积和总孔容积,但会使平均孔径减小,这表明酸洗主要提高微孔率,对微孔的形成有较大的促进作用。同时,酸洗使得更多的含氧官能团保留在生物质热解焦表面,这种影响对玉米秸秆和稻壳尤为明显。气化焦油的吸附实验结果表明酸洗后热解焦的吸附能力有所增加。  相似文献   

5.
《能源学会志》2020,93(1):198-209
Nowadays, biomass increasingly replaces fossil fuels for domestic heating production. But this leads to gaseous and particulate pollutant emissions. Wood washing is a process which can be applied to reduce such emissions. In the present study, the impact of this process on the extraction of mineral and organic compounds from wood sawdust from three different species (beech, fir and oak) was analyzed, as well as the influence on the wood thermal reactivity. Wood washing leads to a decrease in several ionic elements such as potassium and sodium, which can be largely removed from biomass. Globally, mineral extracts range between 17 and 40% of the initial mass depending of the particle size (ships or sawdust) and of the specie (beech, fir and oak). Moreover, 2% of wood extractives can also be removed from wood. The impacts of wood granulometry, wood drying and washing temperature have been studied to understand the different extraction processes. Wood demineralization has been modelled through pseudo first- and second-order models to derive kinetic parameters of ionic exchanges between water and wood. The pseudo first-order model gives poor results. The second-order model show rapid exchanges with half time reactions approximately equal to 23, 24 and 40 min for beech, fir and oak samples, respectively, washed during a week.  相似文献   

6.
《能源学会志》2020,93(1):312-323
A pre-treated trommel fines feedstock (DPT) with 35.1 wt% ash content and particle size range of 0.5–2 mm was processed through two (100% distilled water and 1% surfactant in distilled water) aqueous agitated washing and sedimentation procedures for ash reduction prior to fast pyrolysis in a bubbling fluidized bed reactor. The washing process led to more than 36% reduction in the ash/inorganic contents of the DPT feedstock and yielded about 78 wt% of organic-rich feedstocks denoted as WPT1 and WPT2. Characterisation and fast pyrolysis of all three feedstocks was carried out to evaluate the effect of the washing process on their physico-chemical characteristics and yields of fast pyrolysis products. Results showed that the ash reduction led to increase in the volatile matter contents of the washed feedstocks by 20%, while reducing nitrogen contents. In addition, fast pyrolysis of the feedstocks showed improved yield of liquid and gas products, with a dramatic reduction of reaction water, indicating that the ash removal reduced the catalytic effect of the ash on water formation during the fast pyrolysis process. The major organic compounds in the liquid products included phenols and furans from biogenic fraction of the feedstock as well as aromatic hydrocarbons such as those obtained from pyrolysis of plastics. More importantly, the overall energy yields from the fast pyrolysis process increased by over 35% after washing the feedstock, with washing with only distilled water alone giving the highest energy yield of 93%. Hence, coupling the water-washing ash reduction process with fast pyrolysis appeared to be a suitable technology for valorising feedstocks with high ash contents such as trommel fines for energy and chemicals.  相似文献   

7.
不同生物质灰的理化特性   总被引:6,自引:0,他引:6  
根据我国和美国国家标准,将稻草、松木屑和梧桐树叶3种生物质分别在815和600℃下制灰,此外也在500℃下制灰进行比较。测定了灰分量和灰成分,考察了灰成分中氧化物的含量变化以及生物质灰的积灰、结渣特性;利用X射线衍射方法和SEM对不同温度灰的物相和灰形态进行了分析;利用灰熔点仪测定了生物质灰的灰熔点。研究表明:灰分量、灰成分、物相变化、灰形态以及灰熔点均与灰化温度密切相关,600℃的灰化温度比较适合研究生物质灰分的性质。  相似文献   

8.
The main objective of this study was to determine ash transformation and deposition characteristic for three types of straw (corn straw, oat straw, and rice straw) combustion at temperatures between 500 and 1000°C. The collected deposits on the sampling probe were characterized with X-ray diffraction and scanning electron microscopy combined with energy dispersive X-ray analysis. The results indicated that the ash forming processes of straw were influenced by fuel composition and temperature. The quantity of corn straw ash collected from deposition probe was noticeably lower than that of oat straw and rice straw due to different contents of K, S, and Si in fuels. The deposition amounts of corn straw and oat straw followed a linear pattern at temperatures below 800°C, while rice straw followed a nonlinear pattern as a function of temperature. Corn straw was an ideal fuel compared to oat straw and rice straw from the points of deposition amounts and appearance. It also can be found that silicon, calcium, potassium, and sulfur were key points in the forming process of ash deposits.  相似文献   

9.
Careful consideration and proper execution of representative sampling and mass reduction procedures are critical for the validity and reliability of chemical analyses of highly heterogeneous biomass fuels. It is demonstrated how faulty sampling can result in apparent ash compositions that differ from the true compositions by factors of 2–3 for many major oxides. Analytical results based on non-representative samples are not representative for the specific fuel and processes being studied. Despite the general acceptance that accurate and representative compositions of biomass fuel and their derivatives are a critical prerequisite for understanding reactions and elemental fractionation during combustion and other thermal conversion processes, the biomass energy community appears largely to have ignored the critical issues surrounding representative sampling. This can have resulted in misleading or faulty conclusions and may have restricted our ability to perform reliable predictive modeling. We here point to effective yet simple sampling principles that should be implemented in future biomass fuel studies.  相似文献   

10.
Abstract

Owing to Denmark's pledge to reduce carbon dioxide emissions, biomass is being increasingly utilised as a fuel for generating energy. Extensive research and development projects, especially in the area of material performance for biomass fired boilers, have been undertaken to make biomass a viable fuel resource. When straw is combusted, potassium chloride and potassium sulphate are present in ash products, which condense on superheater components. This gives rise to specific chlorine corrosion problems not previously encountered in coal fired power plants. The type of corrosion attack can be directly ascribed to the composition of the deposit and the metal surface temperature. In woodchip boilers, a similar corrosion rate and corrosion mechanism has on some occasions been observed. Cofiring of straw (10 and 20% energy basis) with coal has shown corrosion rates lower than those in straw fired plants. With both 10 and 20% straw, no chlorine corrosion was seen. The present paper will describe the results from in situ investigations undertaken in Denmark on high temperature corrosion in biomass fired plants. Results from 100% straw firing, woodchip and cofiring of straw with fossil fuels are summarised and compared.  相似文献   

11.
With respect to the use of densified biomass fuels in fully automatic heating systems for the residential sector a high quality of these fuels is required. Several European countries already have implemented standards for such fuels. In other countries such standards are in preparation or planned. Furthermore, in some countries also standards from associations are existing (e.g. from the Austrian Pellets Association). In addition to these national standards, European standards for solid biomass fuels are under development. For producers of densified biomass fuels, especially for pellet producers, it is therefore very important to produce high-quality fuels keeping the limiting values of the standards addressed. However, in this context it has to be considered that as a high fuel quality as is necessary for the combustion of densified biomass fuels in automatic small-scale furnaces is not necessary if these fuels are used in larger industrial furnaces as they are equipped with more sophisticated flue gas cleaning, combustion and process control systems. Two pellet qualities, one for industrial and one for small-scale consumers seem to be more meaningful.

Within the framework of the EU-ALTENER-project “An Integrated European Market for Densified Biomass Fuels (INDEBIF)” a questionnaire survey of European producers of densified biomass fuels was performed. In this connection the possibility was offered to the producers to participate in an analysis programme with their fuels. An overview was obtained of the qualities of densified biomass fuels offered in the European market, covering pellets and briquettes from Austria, Italy, Sweden, Spain, Norway and the Czech Republic.

The parameters analysed were the dimensions of the fuels, the bulk and the particle density, the water and the ash content, the gross and the net calorific value, the abrasion, the content of starch (as an indication for the use of biological binding agents), the concentrations of C, H, N, S, Cl, K as well as of the heavy metals Cd, Pb, Zn, Cr, Cu, As and Hg. These parameters have been chosen following the Austrian, German, Swiss and Swedish standards for densified biomass fuels.

The results showed that a majority of the participating producers produce fuels of high quality. However, wood pellets of some producers show a high abrasion, one of the most important quality parameters for pellets. An increased amount of fines often causes failures in the feeding systems used in the residential heating sector. In order to decrease abrasion, the addition of small amounts of biological binding agents (e.g. maize or rye) is possible. This kind of additive is most common in Austria.

Moreover, some producers obviously use not only chemically untreated raw materials or additives, which increase the content of pollutants. Such fuels cause problems regarding emissions, deposit formation and corrosion. Emission problems are expected due to increased contents of N, Cl, S as well as heavy metals. Increased concentrations of heavy metals additionally contaminate the ash, increased Cl concentrations raise the risk of corrosion. Moreover, an increased content of K has a negative effect on the ash melting behaviour and causes higher aerosol formation, which enhances deposit formation and particulate emissions.  相似文献   


12.
对生物中钾的赋存形式及其沉积过程进行分析得出钾含量高且反应性高是影响积灰形成的关键因素。研究了钾对飞灰特性的影响以及烟气中钾浓度对积灰的影响,研究结果表明,钾促进了积灰的形成。钾促进积灰形成的主要途径是:钾与硅酸盐结合形成低熔点化合物促进灰粒间的烧结;钾沉积在飞灰颗粒的表面增加了飞灰的表面粘性。最后介绍了几种减轻钾对积灰形成的影响的方法。  相似文献   

13.
Cross-flow washing of wheat straw and beech sawdust with water was carried out in order to leach the alkali and alkaline earth metals from them. Incremental concentration change (C = Δm/ΔV) of alkali and alkaline-earth metals in the leachate was plotted against the wash water volume. Maximum increase in Δm/ΔV was achieved after passing 0.04 to 0.06 dm3 of water through the washed biomass. After passing 0.2 dm3 of water through the biomass, leaching of alkali metals was practically completed. Concentration of potassium ion was predominant in the leachate. From the whole amount of alkali and alkaline-earth metal ions, found in the aqueous phase after washing, K+ ions make about 80% in case of wheat straw and 64% in case of beech sawdust. Concentration of other considered metal ions was much less comparing to the potassium ones.Change in the pH and electrical conductivity (EC) were measured after passing of each portion of wash water through the biomass. Change of the EC against the wash water volume follows fairly the change of leachate composition. Based on the experimental results, the process of alkali and alkaline-earth metals leaching was modelled assuming the cross-flow scheme of leaching process. Proposed model follows fairly the experimental data. Discrepancy between the experimental and calculated values for alkaline-earth metals in case of beech sawdust is attributed to a different leaching mechanism.  相似文献   

14.
Ash deposition always brings boilers some trouble due to fouling or slagging. In this paper, a completely controlled system was developed to study the growth of ash deposit. A novel sampling probe was designed to online measure the heat flux through ash deposit. Additionally, the thickness of ash deposit can be obtained by an online figure collecting system. The results of this research showed that as the thickness of ash deposit increased, the heat flux decreased. It was also found that at the initial stage of ash deposition when the thickness of ash deposit is approximately 1 mm, the heat flux through ash deposit had a sharp reduction. An effective method was attempted to situ measure the effective thermal conductivity of the ash deposit in the simulated combustion flue gas. It was found that temperature of the ash deposit layer had no obvious effect on its value. It was concluded that the structure of ash deposit had no obvious change in a short deposition time of 30 min with varied surface temperatures of the probe head between 400 °C and 600 °C.  相似文献   

15.
利用可再生生物质资源转化制备液体燃料已成为全球关注的热点。常见的生物质能源原料主要有草本植物、木本植物、微藻和脂肪类生物质资源,丰富的生物质资源为生物质液体燃料的生产提供了广泛的原料来源,也为生物质能源的多样性发展提供了坚实的物质基础。不同的生物质原料种类和转化方式可生产出性能各异的多种液体燃料,主要包括醇类燃料(乙醇、丁醇等)、烃类燃料和生物柴油等,由此构建出生物质转化制备液体燃料的转化途径网络。醇类燃料的生物质转化途径主要包括生物质直接发酵、生物质合成气发酵、生物质合成气化学合成等;烃类燃料的生物质转化途径主要有生物质液化加氢、微藻热化学途径、生物质合成气费托合成、生物质发酵脂肪酸加氢及油脂类加氢途径等;生物柴油的转化途径主要有油脂酯交换和微藻萃取酯交换。在这些液体燃料的转化途径中,只有生物质发酵制乙醇途径和油脂酯交换途径基本实现了商业化应用,其他大部分转化途径仍处于开发阶段。  相似文献   

16.
Biomass is regarded as CO2-neutral, while the high contents of potassium and chlorine in biomass induce severe particulate matter emission, ash deposition, and corrosion in combustion facilities. Co-firing biomass with coal in pulverized-combustion (PC) furnaces is able to solve these problems, as well as achieve a much higher generating efficiency than grate furnaces. In this work, the particulate matter (PM) emission from biomass co-firing with coal was studied in an entrained flow reactor at a temperature of 1623 K simulating PC furnace condition. PMs were sampled through a 13-stage impactor, and their morphology and elemental composition were characterized by scanning electron microscopy and electron dispersive X-ray spectroscopy. SO2 emissions were measured to interpret the possibility of potassium sulfation during co-firing. Results show that PMs from the separated combustion of both biomass and coal present a bimodal particle size distribution (PSD). The concentration and size of fine-mode submicron particles (PM1.0) from biomass combustion are much higher than those from coal combustion because of the high potassium content in biomass. For the co-firing cases, with the coal ratio increasing from 0% to 50%, the PM1.0 yield is reduced by more than half and the PM1.0 size becomes smaller, in contrast, the concentration of coarse-mode particles with the size of 1.0–10 μm (PM1.0-10) increases. The measured PM1.0 yields of co-firing are lower than the theoretically weight-averaged ones, which proves that during the biomass and coal co-firing in PC furnaces, the vaporized potassium from biomass can be efficiently captured by these silicon-aluminate oxides in coal ash. In the studied range of coal co-firing ratio (≤50 wt.%), the chlorides and sulfates of alkali metals from biomass burning are the dominating components in PM1.0, and a certain amount of silicon is observed in PM0.1-1. The analysis of chemical composition in PM1.0, together with that of SO2 emission, indicates a marginal sulfation of alkali metal chloride occurring at high temperatures in PC furnaces.  相似文献   

17.
《能源学会志》2019,92(6):1743-1756
Ash deposit on the heat exchangers reduces the heat transfer efficiency and even threatens the operation of the equipment. The tool of computational fluid dynamics (CFD) allows for better understanding of the deposit formation and the prediction of the process. This paper presents an improved CFD model to reproduce the growth of ash deposition on a temperature-controlled probe in a pilot-scale furnace with the commercial software Fluent16.0. Dynamic mesh technique is included to investigate the shape variation of the ash deposit during the deposit growth. The model is improved by taking the changing surface temperature of the deposition into consideration. The deposition efficiency, surface temperature and heat flux through the deposit are monitored as the iteration. Three cases are presented to investigate the influence of furnace temperature (1473 K, 1523 K and 1573 K). The results show that the deposition efficiency increases with the increasing surface temperature of the deposit while the mass flow of impaction decreases with the changing flow field. The growth rates of the deposit for the three cases are 0.064, 0.079 and 0.103 mm/min within the simulation time which is consistent with experiment results. The simulated surface temperature shows the same trend of the experimental values. The heat flux in the simulation decreases with a range of 38.2%, 50.3% and 50% for the three cases, respectively. This method of modelling can be used to predict the growth of deposit accurately.  相似文献   

18.
通过对生物质燃料(锯末、玉米秸和麦秸)与煤混燃灰化学成分和熔融温度的测定,利用灰分的碱酸比B/A、硅比G、硅铝比S/A、积灰沾污特性指数Hw、磨损特性指数日。等判别指数对生物质纯燃、与煤混燃时的结渣、积灰和磨损特性进行了研究和分析。结果表明,生物质灰都具有结渣倾向,麦秸灰具有严重的积灰倾向,玉米秸灰和锯末灰有易积灰倾向。生物质灰的磨损倾向都较轻微。随着生物质与煤混燃比例的增加,结渣有加重趋势。灰中酸性氧化物和碱性氧化物的含量会直接影响灰的熔融温度。  相似文献   

19.
Ash deposits formed during fuel thermal conversion and located on furnace walls and on convective pass tubes, may seriously inhibit the transfer of heat to the working fluid and hence reduce the overall process efficiency. Combustion of biomass causes formation of large quantities of troublesome ash deposits which contain significant concentrations of alkali, and earth-alkali metals. The specific composition of biomass deposits give different characteristics as compared to coal ash deposits, i.e. different physical significance of the deposition mechanisms, lower melting temperatures, etc. Low melting temperatures make straw ashes especially troublesome, since their stickiness is higher at lower temperatures, compared to coal ashes. Increased stickiness will eventually lead to a higher collection efficiency of incoming ash particles, meaning that the deposit may grow even faster.  相似文献   

20.
为解决生物质与煤混燃存在的结渣积灰问题.以稻秸秆、白杨木屑、稻壳和煤在不同配比下混合燃烧的灰分作为研究对象,利用HR-3C灰熔融性测定仪研究了生物质与煤混合燃烧的熔融特性.研究表明:生物质燃料中碱金属含量比煤中的含量要高,提高生物质的掺入比总体上会使灰熔融温度降低;此外,对于二氧化硅含量不同的生物质燃料其灰熔融性有所差...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号