首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Graphdiyne (GDY), an emerging type of carbon allotropes, possesses fascinating electrical, chemical, and mechanical properties to readily spark energy applications in the realm of Li‐ion and Na‐ion batteries. Nevertheless, rational design of GDY architectures targeting advanced K‐ion storage has rarely been reported to date. Herein, the first example of synthesizing GDY frameworks in a scalable fashion to realize superb potassium storage for high‐performance K‐ion battery (KIB) anodes is showcased. To begin with, first principles calculations provide theoretical guidances for analyzing the intrinsic potassium storage capability of GDY. Meanwhile, the specific capacity is predicted to be as high as 620 mAh g?1, which is considerably augmented as compared with graphite (278 mAh g?1). Experimental tests then reveal that prepared GDY framework indeed harvests excellent electrochemical performance as a KIB anode, achieving high specific capacity (≈505 mAh g?1 at 50 mA g?1), outstanding rate performance (150 mAh g?1 at 5000 mA g?1) and favorable cycling stability (a high capacity retention of over 90% after 2000 cycles at 1000 mA g?1). Furthermore, kinetic analysis reveals that capacitive effect mainly accounts for the K‐ion storage, with operando Raman spectroscopy/ex situ X‐ray photoelectron spectroscopy identifying good electrochemical reversibility of GDY.  相似文献   

2.
The application of graphite anodes in potassium‐ion batteries (KIB) is limited by the large variation in lattice volume and the low diffusion coefficient of potassium ions during (de)potassiation. This study demonstrates nitrogen‐doped, defect‐rich graphitic nanocarbons (GNCs) as high‐performance KIB anodes. The GNCs with controllable defect densities are synthesized by annealing an ethylenediaminetetraacetic acid nickel coordination compound. The GNCs show better performance than the previously reported thin‐walled graphitic carbonaceous materials such as carbon nanocages and nanotubes. In particular, the GNC prepared at 600 °C shows a stabilized capacity of 280 mAh g?1 at 50 mA g?1, robust rate capability, and long cycling life due to its high‐nitrogen‐doping, short‐range‐ordered, defect‐rich graphitic structure. A high capacity of 189 mAh g?1 with a long cycle life over 200 cycles is demonstrated at a current density of 200 mA g?1. Further, it is confirmed that the potassium ion storage mechanism of GNCs is different from that of graphite using multiple characterization methods. Specifically, the GNCs with numerous defects provide more active sites for the potassiation process, which results in a final discharge product with short‐range order. This study opens a new pathway for designing graphitic carbonaceous materials for KIB anodes.  相似文献   

3.
Carbon‐based materials are promising anodes for potassium‐ion batteries (PIBs). However, due to the significant volume expansion and structural instability, it is still a challenge to achieve a high capacity, high rate and long cycle life for carbonaceous anodes. Herein, oxygen/fluorine dual‐doped porous carbon nanopolyhedra (OFPCN) is reported for the first time as a novel anode for PIBs, which exhibits a high reversible capacity of 481 mA h g?1 at 0.05 A g?1 and excellent performance of 218 mA h g?1 after 2000 cycles at 1 A g?1 with 92% capacity retention. Even after 5000 robust cycles at 10 A g?1 with charging/discharging time of around 40 s, an unprecedented capacity of 111 mA h g?1 is still maintained. Such ultrafast potassium storage and unprecedented cycling stability have been seldom reported in PIBs. Quantitative kinetics analysis reveals that both diffusion and capacitance processes are involved in the potassium storage mechanism. Density functional theory calculations demonstrate that the O/F dual‐doped porous carbon promotes the K‐adsorption ability and can absorb multiple K atoms with slight structural distortion, which accounts for the high specific capacity, outstanding rate capability, and excellent cycling stability of the OFPCN anode.  相似文献   

4.
Carbon‐based materials are considered to be one of the most promising materials for negative electrodes of the future, because of their good chemical stability, high electrical conductivity, and environmental benignity. However, to date, the underlying principles of K‐ion storage in carbonaceous anodes remain elusive, which greatly hinders the development of such a category of anodes. Herein, the ultrastable K‐ion storage of carbonaceous anode through systematic analyses, including comprehensive electrochemical characterizations, kinetics calculations, and structural/compositional evolution mechanism studies, is theoretically elucidated and experimentally verified. Specifically, it is found that the uniquely envelope‐like nitrogen‐doped carbon nanosheets with high pseudocapacitive could bring ultrastable storage of potassium ions, delivering a high initial reversible capacity of 367 mAh g?1 at a current density of 50 mA g?1 and retain 70.5 and 75.6% at current densities of 500 and 1000 mA g?1 after 1000th cycle, respectively. This study could enlighten researchers on further progress in the field of carbonaceous K‐ion battery negative electrode with a long cycle life.  相似文献   

5.
Potassium‐ion batteries (KIBs) are new‐concept of low‐cost secondary batteries, but the sluggish kinetics and huge volume expansion during cycling, both rooted in the size of large K ions, lead to poor electrochemical behavior. Here, a bamboo‐like MoS2/N‐doped‐C hollow tubes are presented with an expanded interlayer distance of 10 Å as a high‐capacity and stable anode material for KIBs. The bamboo‐like structure provides gaps along axial direction in addition to inner cylinder hollow space to mitigate the strains in both radial and vertical directions that ultimately leads to a high structural integrity for stable long‐term cycling. Apart from being a constituent of the interstratified structure the N‐doped‐C layers weave a cage to hold the potassiation products (polysulfide and the Mo nanoparticles) together, thereby effectively hindering the continuing growth of solid electrolyte interphase in the interior of particles. The density functional theory calculations prove that the MoS2/N‐doped‐C atomic interface can provide an additional attraction toward potassium ion. As a result, it delivers a high capacity at a low current density (330 mAh g?1 at 50 mA g?1 after 50 cycles) and a high‐capacity retention at a high current density (151 mAh g?1 at 500 mA g?1 after 1000 cycles).  相似文献   

6.
Potassium‐ion batteries (KIBs) in organic electrolytes hold great promise as an electrochemical energy storage technology owing to the abundance of potassium, close redox potential to lithium, and similar electrochemistry with lithium system. Although carbon materials have been studied as KIB anodes, investigations on KIB cathodes have been scarcely reported. A comprehensive study on potassium Prussian blue K0.220Fe[Fe(CN)6]0.805?4.01H2O nanoparticles as a potential cathode material is for the first time reported. The cathode exhibits a high discharge voltage of 3.1–3.4 V, a high reversible capacity of 73.2 mAh g?1, and great cyclability at both low and high rates with a very small capacity decay rate of ≈0.09% per cycle. Electrochemical reaction mechanism analysis identifies the carbon‐coordinated FeIII/FeII couple as redox‐active site and proves structural stability of the cathode during charge/discharge. Furthermore, for the first time, a KIB full‐cell is presented by coupling the nanoparticles with commercial carbon materials. The full‐cell delivers a capacity of 68.5 mAh g?1 at 100 mA g?1 and retains 93.4% of the capacity after 50 cycles. Considering the low cost and material sustainability as well as the great electrochemical performances, this work may pave the way toward more studies on KIB cathodes and trigger future attention on rechargeable KIBs.  相似文献   

7.
Potassium‐ion hybrid capacitors (PIHCs) show great potential in large‐scale energy storage due to the advantages of electrochemical capacitors and potassium‐ion batteries. However, their development remains at the preliminary stage and is mainly limited by the kinetic imbalance between the two electrodes. Herein, an architecture of NbSe2 nanosheets embedded in N, Se co‐doped carbon nanofibers (NbSe2/NSeCNFs) as flexible, free‐standing, and binder‐free anodes for PIHCs is reported. The NbSe2/NSeCNFs with hierarchically porous structure and N, Se co‐doping afford highly efficient channels for fast transportation of potassium ions and electrons during repeated cycling process. Furthermore, excellent electrochemical reversibility of the NbSe2/NSeCNFs electrode is demonstrated through in situ XRD, in situ Raman, ex situ transmission electron microscopy and element mapping. Thus, PIHCs with the NbSe2/NSeCNFs anode and active carbon cathode achieve a high energy of 145 W h kg?1 at a current density of 50 mA g?1, as well as an ultra‐long cycle life of over 10 000 cycles at a high current density of 2 A g?1. These results indicate that the assembled PIHCs display great potential for applications in the field of ultra‐long cycling energy storage devices.  相似文献   

8.
Potassium‐based dual ion batteries (K‐DIBs) with potassium cation (K+) intercalation graphitic anodes have been investigated for their potential in large‐scale energy storage applications owing to their merits of low cost and environmental friendly. Nonetheless, graphite anodes are plagued by volume expansion from the large K+ ions and the co‐intercalation of solvent molecules during the charging. Accordingly, organic materials stand out for the flexible adjustable structures and abundant active sites, which can accommodate cations by multiple functional groups without structural collapse. However, K‐DIBs based on organic anodes have rarely been investigated. Herein, 3D porous dipotassium terephthalate nanosheets are synthesized via a freeze‐dry method as the K‐DIB anode, which can reversibly store K+ ions at a fast rate with a high specific capacity and robust stability due to the sufficient redox active sites and diffusion pathways of K+ ions in the 3D porous structure. Consequently, a novel K‐DIB configuration combining this fast kinetics organic anode and environmental friendly expanded graphite (EG) cathode is constructed (pK2TP//EG), which exhibits a high specific capacity (68 mAh g‐1 at 2 C), good rate performance up to 20 C, and long cycling life with a capacity retention ~100% after 2000 cycles, which is the best performance observed among reported K‐DIBs.  相似文献   

9.
Bismuth (Bi) is an attractive material as anodes for both sodium‐ion batteries (NIBs) and potassium‐ion batteries (KIBs), because it has a high theoretical gravimetric capacity (386 mAh g?1) and high volumetric capacity (3800 mAh L?1). The main challenges associated with Bi anodes are structural degradation and instability of the solid electrolyte interphase (SEI) resulting from the huge volume change during charge/discharge. Here, a multicore–shell structured Bi@N‐doped carbon (Bi@N‐C) anode is designed that addresses these issues. The nanosized Bi spheres are encapsulated by a conductive porous N‐doped carbon shell that not only prevents the volume expansion during charge/discharge but also constructs a stable SEI during cycling. The Bi@N‐C exhibits unprecedented rate capability and long cycle life for both NIBs (235 mAh g?1 after 2000 cycles at 10 A g?1) and KIBs (152 mAh g?1 at 100 A g?1). The kinetic analysis reveals the outstanding electrochemical performance can be attributed to significant pseudocapacitance behavior upon cycling.  相似文献   

10.
Potassium‐ion batteries based on conversion/alloying reactions have high potential applications in new‐generation large‐scale energy storage. However, their applications are hindered by inherent large‐volume variations and sluggish kinetics of the conversion/alloying‐type electrode materials during the repeated insertion and extraction of bulky K+ ions. Although some efforts have been focused on this issue, the reported potassium‐ion batteries still suffer from poor cycling lifespans. Here, a superior stable antimony selenide (Sb2Se3) anode is reported for high‐performance potassium‐ion batteries through a combined strategy of conductive encapsulation and 2D confinement. The Sb2Se3 nanorods are uniformly coated with a conductive N‐doped carbon layer and then confined between graphene nanosheets. The synergistic effects between conductive coating and confinement effectively buffer the large volumetric variation of the conversion/alloying anodes, which can maintain structural stability for superior cyclability. The as‐prepared anodes exhibit a high reversible specific capacity of ≈590 mA h g?1 and outstanding cycling stability over 350 cycles. In situ and ex situ characterizations reveal a high structural integration of the large‐volume‐change Sb2Se3 anodes during a reversible K storage mechanism of two‐step conversion and multistep alloying processes. This work can open up a new possibility for the design of stable conversion/alloying‐based anodes for high‐performance potassium‐ion batteries.  相似文献   

11.
Binder plays a key role in maintaining the mechanical integrity of electrodes in lithium‐ion batteries. However, the existing binders typically exhibit poor stretchability or low conductivity at large strains, which are not suitable for high‐capacity silicon (Si)‐based anodes undergoing severe volume changes during cycling. Herein, a novel stretchable conductive glue (CG) polymer that possesses inherent high conductivity, excellent stretchablity, and ductility is designed for high‐performance Si anodes. The CG can be stretched up to 400% in volume without conductivity loss and mechanical fracture and thus can accommodate the large volume change of Si nanoparticles to maintain the electrode integrity and stabilize solid electrolyte interface growth during cycling while retaining the high conductivity, even with a high Si mass loading of 90%. The Si‐CG anode has a large reversible capacity of 1500 mA h g?1 for over 700 cycles at 840 mA g?1 with a large initial Coulombic efficiency of 80% and high rate capability of 737 mA h g?1 at 8400 mA g?1. Moreover, the Si‐CG anode demonstrates the highest achieved areal capacity of 5.13 mA h cm?2 at a high mass loading of 2 mg cm?2. The highly stretchable CG provides a new perspective for designing next‐generation high‐capacity and high‐power batteries.  相似文献   

12.
Potassium‐ion batteries have been regarded as the potential alternatives to lithium‐ion batteries (LIBs) due to the low cost, earth abundance, and low potential of K (?2.936 vs standard hydrogen electrode (SHE)). However, the lack of low‐cost cathodes with high energy density and long cycle life always limits its application. In this work, high‐energy layered P2‐type hierarchical K0.65Fe0.5Mn0.5O2 (P2‐KFMO) microspheres, assembled by the primary nanoparticles, are fabricated via a modified solvent‐thermal method. Benefiting from the unique microspheres with primary nanoparticles, the K+ intercalation/deintercalation kinetics of P2‐KFMO is greatly enhanced with a stabilized cathodic electrolyte interphase on the cathode. The P2‐KFMO microsphere presents a highly reversible potassium storage capacity of 151 mAh g?1 at 20 mA g?1, fast rate capability of 103 mAh g?1 at 100 mA g?1, and long cycling stability with 78% capacity retention after 350 cycles. A full cell with P2‐KFMO microspheres as cathode and hard carbon as anode is constructed, which exhibits long‐term cycling stability (>80% of retention after 100 cycles). The present high‐performance P2‐KFMO microsphere cathode synthesized using earth‐abundant elements provides a new cost‐effective alternative to LIBs for large‐scale energy storage.  相似文献   

13.
Metal oxide‐based nanomaterials are widely studied because of their high‐energy densities as anode materials in lithium‐ion batteries. However, the fast capacity degradation resulting from the large volume expansion upon lithiation hinders their practical application. In this work, the preparation of walnut‐like multicore–shell MnO encapsulated nitrogen‐rich carbon nanocapsules (MnO@NC) is reported via a facile and eco‐friendly process for long‐cycling Li‐ion batteries. In this hybrid structure, MnO nanoparticles are uniformly dispersed inside carbon nanoshells, which can simultaneously act as a conductive framework and also a protective buffer layer to restrain the volume variation. The MnO@NC nanocapsules show remarkable electrochemical performances for lithium‐ion batteries, exhibiting high reversible capability (762 mAh g?1 at 100 mA g?1) and stable cycling life (624 mAh g?1 after 1000 cycles at 1000 mA g?1). In addition, the soft‐packed full batteries based on MnO@NC nanocapsules anodes and commercial LiFePO4 cathodes present good flexibility and cycling stability.  相似文献   

14.
Poly(thiophene) as a kind of n‐doped conjugated polymer with reversible redox behavior can be employed as anode material for lithium‐ion batteries (LIBs). However, the low redox activity and poor rate performance for the poly(thiophene)‐based anodes limit its further development. Herein, a structure‐design strategy is reported for thiophene‐containing conjugated microporous polymers (CMPs) with extraordinary electrochemical performance as anode materials in LIBs. The comparative study on the electrochemical performance of the structure‐designed thiophene‐containing CMPs reveals that high redox‐active thiophene content, highly crosslinked porous structure, and improved surface area play significant roles for enhancing electrochemical performances of the resulting CMPs. The all‐thiophene‐based polymer of poly(3,3′‐bithiophene) with crosslinked structure and a high surface area of 696 m2 g?1 exhibits a discharge capacity of as high as 1215 mAh g?1 at 45 mA g?1, excellent rate capability, and outstanding cycling stability with a capacity retention of 663 mAh g?1 at 500 mA g?1 after 1000 cycles. The structure–performance relationships revealed in this work offer a fundamental understanding in the rational design of CMPs anode materials for high performance LIBs.  相似文献   

15.
Lithium ion battery is the predominant power source for portable electronic devices, electrical vehicles, and back‐up electricity storage units for clean and renewable energies. High‐capacity and long‐life electrode materials are essential for the next‐generation Li‐ion battery with high energy density. Here bimetal‐organic‐frameworks synthesis of Co0.4Zn0.19S@N and S codoped carbon dodecahedron is shown with rooted carbon nanotubes (Co‐Zn‐S@N‐S‐C‐CNT) for high‐performance Li‐ion battery application. Benefiting from the synergetic effect of two metal sulfide species for Li‐storage at different voltages, mesoporous dodecahedron structure, N and S codoped carbon overlayer and deep‐rooted CNTs network, the product exhibits a larger‐than‐theoretical reversible Li‐storage capacity of 941 mAh g?1 after 250 cycles at 100 mA g?1 and excellent high‐rate capability (734, 591, 505 mAh g?1 after 500 cycles at large current densities of 1, 2, and 5 A g?1 , respectively).  相似文献   

16.
Hybrid potassium‐ion capacitors (KICs) show great promise for large‐scale storage on the power grid because of cost advantages, the weaker Lewis acidity of K+ and low redox potential of K+/K. However, a huge challenge remains for designing high‐performance K+ storage materials since K+ ions are heavier and larger than Li+ and Na+. Herein, the synthesis of hierarchical Ca0.5Ti2(PO4)3@C microspheres by use of the electrospraying method is reported. Benefiting from the rich vacancies in the crystal structure and rational nanostructural design, the hybrid Ca0.5Ti2(PO4)3@C electrode delivers a high reversible capacity (239 mA h g?1) and superior rate performance (63 mA h g?1 at 5 A g?1). Moreover, the KIC employing a Ca0.5Ti2(PO4)3@C anode and activated carbon cathode, affords a high energy/power density (80 W h kg?1 and 5144 W kg?1) in a potential window of 1.0–4.0 V, as well as a long lifespan of over 4000 cycles. In addition, in situ X‐ray diffraction is used to unravel the structural transition in Ca0.5Ti2(PO4)3, suggesting a two‐phase transition above 0.5 V during the initial discharge and solid solution processes during the subsequent K+ insertion/extraction. The present study demonstrates a low‐cost potassium‐based energy storage device with high energy/power densities and a long lifespan.  相似文献   

17.
Graphene encapsulated nanosheet‐assembled ZnO‐Mn‐C hierarchical hollow microspheres are produced through a simple yet effective dual electrostatic assembly strategy, followed by a heating treatment in inert atmosphere. The modification of graphene sheets, metal Mn, and in situ carbon leads to form 3D interconnected conductive framework as electron highways. The hollow structure and the open configuration of hierarchical microspheres guarantee good structural stability and rapid ionic transport. More importantly, according to the density functional theory calculations, the oxygen vacancies in the hierarchical microspheres would cause an imbalanced charge distribution and thus the formation of local in‐plane electric fields around oxygen vacancy sites, which is beneficial for the ionic/electronic transport during cycling. Due to this multiscale coordinated design, the as‐fabricated graphene encapsulated nanosheet‐assembled ZnO‐Mn‐C hierarchical hollow microspheres demonstrate good lithium storage properties in terms of high reversible capacity (1094 mA h g?1 at 100 mA g?1), outstanding high‐rate long‐term cycling stability (843 mA h g?1 after 1000 cycles at 2000 mA g?1), and remarkable rate capability (422 mA h g?1 after total 1600 cycles at 5000 mA g?1).  相似文献   

18.
Si‐based anodes with a stiff diamond structure usually suffer from sluggish lithiation/delithiation reaction due to low Li‐ion and electronic conductivity. Here, a novel ternary compound ZnSi2P3 with a cation‐disordered sphalerite structure, prepared by a facile mechanochemical method, is reported, demonstrating faster Li‐ion and electron transport and greater tolerance to volume change during cycling than the existing Si‐based anodes. A composite electrode consisting of ZnSi2P3 and carbon achieves a high initial Coulombic efficiency (92%) and excellent rate capability (950 mAh g?1 at 10 A g?1) while maintaining superior cycling stability (1955 mAh g?1 after 500 cycles at 300 mA g?1), surpassing the performance of most Si‐ and P‐based anodes ever reported. The remarkable electrochemical performance is attributed to the sphalerite structure that allows fast ion and electron transport and the reversible Li‐storage mechanism involving intercalation and conversion reactions. Moreover, the cation‐disordered sphalerite structure is flexible to ionic substitutions, allowing extension to a family of Zn(Cu)Si2+xP3 solid solution anodes (x = 0, 2, 5, 10) with large capacity, high initial Coulombic efficiency, and tunable working potentials, representing attractive anode candidates for next‐generation, high‐performance, and low‐cost Li‐ion batteries.  相似文献   

19.
Potassium‐ion batteries (PIBs) are a promising alternative to lithium‐ion batteries because potassium is an abundant natural resource. To date, PIBs are in the early stages of exploration and only a few anode materials have been investigated. This study reports a cobalt sulfide and graphene (CoS@G) composite as anode electrode for PIBs for the first time. The composite features interconnect quantum dots of CoS nanoclusters uniformly anchored on graphene nanosheets. The coexistence of CoS quantum dot nanoclusters and graphene nanosheets endows the composite with large surface area, highly conductive network, robust structural stability, and excellent electrochemical energy storage performance. An unprecedented capacity of 310.8 mA h g?1 at 500 mA g?1 is obtained after 100 cycles, with a rate capability better than an equivalent sodium‐ion batteries (SIBs). This work provides the evidence that PIBs can be a promising alternative to SIBs, especially at high charge–discharge rates. The development of the CoS@G anode material also provides the basis of expanding the library of suitable anode materials for PIBs.  相似文献   

20.
Manganese‐based metal oxide electrode materials are of great importance in electrochemical energy storage for their favorable redox behavior, low cost, and environmental friendliness. However, their storage capacity and cycle life in aqueous Na‐ion electrolytes is not satisfactory. Herein, the development of a biphase cobalt–manganese oxide (Co? Mn? O) nanostructured electrode material is reported, comprised of a layered MnO2?H2O birnessite phase and a (Co0.83Mn0.13Va0.04)tetra(Co0.38Mn1.62)octaO3.72 (Va: vacancy; tetra: tetrahedral sites; octa: octahedral sites) spinel phase, verified by neutron total scattering and pair distribution function analyses. The biphase Co? Mn? O material demonstrates an excellent storage capacity toward Na‐ions in an aqueous electrolyte (121 mA h g?1 at a scan rate of 1 mV s?1 in the half‐cell and 81 mA h g?1 at a current density of 2 A g?1 after 5000 cycles in full‐cells), as well as high rate performance (57 mA h g?1 a rate of 360 C). Electrokinetic analysis and in situ X‐ray diffraction measurements further confirm that the synergistic interaction between the spinel and layered phases, as well as the vacancy of the tetrahedral sites of spinel phase, contribute to the improved capacity and rate performance of the Co? Mn? O material by facilitating both diffusion‐limited redox and capacitive charge storage processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号