首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Biohybrid microswimmers have recently shown to be able to actively perform in targeted delivery and in vitro biomedical applications. However, more envisioned functionalities of the microswimmers aimed at in vivo treatments are still challenging. A photosynthetic biohybrid nanoswimmers system (PBNs), magnetic engineered bacteria‐Spirulina platensis, is utilized for tumor‐targeted imaging and therapy. The engineered PBNs is fabricated by superparamagnetic magnetite (Fe3O4 NPs) via a dip‐coating process, enabling its tumor targeting ability and magnetic resonance imaging property after intravenous injection. It is found that the PBNs can be used as oxygenerator for in situ O2 generations in hypoxic solid tumors through photosynthesis, modulating the tumor microenvironment (TME), thus improving the effectiveness of radiotherapy (RT). Furthermore, the innate chlorophyll released from the RT‐treated PBNs, as a photosensitizer, can produce cytotoxic reactive oxygen species under laser irradiation to achieve photodynamic therapy. Excellent tumor inhibition can be realized by the combined multimodal therapies. The PBNs also possesses capacities of chlorophyll‐based fluorescence and photoacoustic imaging, which can monitor the tumor therapy and tumor TME environment. These intriguing properties of the PBNs provide a promising microrobotic platform for TME hypoxic modulation and cancer theranostic applications.  相似文献   

2.
Photodynamic therapy (PDT) is a promising treatment modality for cancer management. So far, most PDT studies have focused on delivery of photo­sensitizers to tumors. O2, another essential component of PDT, is not artificially delivered but taken from the biological milieu. However, cancer cells demand a large amount of O2 to sustain their growth and that often leads to low O2 levels in tumors. The PDT process may further potentiate the oxygen deficiency, and in turn, adversely affect the PDT efficiency. In the present study, a new technology called red blood cell (RBC)‐facilitated PDT, or RBC‐PDT, is introduced that can potentially solve the issue. As the name tells, RBC‐PDT harnesses erythrocytes, an O2 transporter, as a carrier for photosensitizers. Because photosensitizers are adjacent to a carry‐on O2 source, RBC‐PDT can efficiently produce 1O2 even under low oxygen conditions. The treatment also benefits from the long circulation of RBCs, which ensures a high intraluminal concentration of photosensitizers during PDT and hence maximizes damage to tumor blood vessels. When tested in U87MG subcutaneous tumor models, RBC‐PDT shows impressive tumor suppression (76.7%) that is attributable to the codelivery of O2 and photosensitizers. Overall, RBC‐PDT is expected to find wide applications in modern oncology.  相似文献   

3.
4.
The severe hypoxia in solid tumors and the vicious aggregation‐caused fluorescence quenching (ACQ) of conventional photosensitizers (PSs) have limited the application of fluorescence imaging‐guided photodynamic therapy (PDT), although this therapy has obvious advantages in terms of its precise spatial–temporal control and noninvasive character. PSs featuring type I reactive oxygen species (ROS) based on free radicals and novel aggregation‐induced emission (AIE) characteristics (AIE‐PSs) could offer valuable opportunities to resolve the above problems, but molecular engineering methods are rare in previous reports. Herein, a strategy is proposed for generating stronger intramolecular charge transfer in electron‐rich anion‐π+ AIE‐active luminogens (AIEgens) to help suppress nonradiative internal conversion and to promote radiative and intersystem crossing to boost free radical generation. Systematic and detailed experimental and theoretical calculations prove the proposal herein: the electron‐donating abilities are enhanced in collaborative donors, and the AIE‐PSs exhibit higher performance in near‐infrared fluorescence imaging‐guided cancer PDT in vitro/vivo. This work serves as an important reference for the design of AIE‐active free radical generators to overcome the ACQ and tumor hypoxia challenges in PDT.  相似文献   

5.
Oxygen plays an essential role in the photodynamic therapy (PDT) of cancer. However, hypoxia inside tumors severely attenuates the therapeutic effect of PDT. To address this issue, a novel strategy is reported for cutting off the oxygen consumption pathway by using sub‐50 nm dual‐drug nanoparticles (NPs) to attenuate the hypoxia‐induced resistance to PDT and to enhance PDT efficiency. Specifically, dual‐drug NPs that encapsulate photosensitizer (PS) verteporfin (VER) and oxygen‐regulator atovaquone (ATO) with sub‐50 nm diameters can penetrate deep into the interior regions of tumors and effectively deliver dual‐drug into tumor tissues. Then, ATO released from NPs efficiently reduce in advance cellular oxygen consumption by inhibition of mitochondria respiratory chain and further heighten VER to generate greater amounts of 1O2 in hypoxic tumor. As a result, accompanied with the upregulated oxygen content in tumor cells and laser irradiation, the dual‐drug NPs exhibit powerful and overall antitumor PDT effects both in vitro and in vivo, and even tumor elimination. This study presents a potential appealing clinical strategy in photodynamic eradication of tumors.  相似文献   

6.
Although cisplatin‐based neoadjuvant chemotherapy is an efficient therapy approach for triple‐negative breast cancer (TNBC), it has dismal prognosis and modestly improved survival benefit. Here, a synergistic immunotherapy of TNBC premised on the elicitation and promotion of immunogenic cell death (ICD) response, through a transformable nanoparticle‐enabled approach for contemporaneous delivery of cisplatin, adjudin, and WKYMVm is reported. The nanoparticles can sequentially respond to matrix metalloproteinases‐2, pH, and glutathione to achieve structural transformation with the advantages of optimal size change, efficient drug delivery, and well‐controlled release. Cisplatin and adjudin can synergistically amplify reactive oxygen species (ROS) cascade and eventually increase the formation of hydrogen peroxide and downstream highly toxic ROS like ?OH, which can elicit ICD response by mechanisms of endoplasmic reticulum stress, apoptotic cell death, and autophagy. WKYMVm can further promote anti‐TNBC immunity by activation of formyl peptide receptor 1 to build stable interactions between dendritic cells and dying cancer cells. Thus, the nanoparticles achieve significant primary tumor regression and pulmonary metastasis inhibition as well as a remarkable survival benefit, with boosting of the innate and adaptive anti‐TNBC immunity.  相似文献   

7.
A reactive oxygen species (ROS)‐activatable doxorubicin (Dox) prodrug vesicle (RADV) is presented for image‐guided ultrafast drug release and local‐regional therapy of the metastatic triple‐negative breast cancer (TNBC). RADV is prepared by integrating a ROS‐activatable Dox prodrug, a poly(ethylene glycol) (PEG)‐modified photosensitizer pyropheophorbide‐a, an unsaturated phospholipid 1,2‐dioleoyl‐sn‐glycero‐3‐phosphocholine, and cholesterol into one single nanoplatform. RADV is of extremely high drug loading ratio (27.5 wt%) by self‐assembly of the phospholipid‐mimic Dox prodrug into the liposomal bilayer membrane. RADV displays good colloidal stability to prevent premature drug leakage during the blood circulation and inert photochemotoxicity to avoid nonspecific side effect. RADV passively accumulates at tumor site through the enhanced permeability and retention effect when administrated systemically. Once deposited at the tumor site, RADV generates fluorescent and photoacoustic signals to guide near‐infrared (NIR) laser irradiation, which can induce localized ROS generation, not only to trigger prodrug activation and ultrafast drug release but also conduct photodynamic therapy in a spatiotemporally controlled manner. In combination with NIR laser irradiation, RADV efficiently inhibits the tumor growth and distant metastasis of TNBC. Local‐regional tumor therapy using intelligent theranostic nanomedicine might provide an alternative option for highly efficient treatment of the metastatic TNBC.  相似文献   

8.
The wide clinical application of photodynamic therapy (PDT) is hampered by poor water solubility, low tumor selectivity, and nonspecific activation of photosensitizers, as well as tumor hypoxia which is common for most solid tumors. To overcome these limitations, tumor‐targeting, redox‐activatable, and oxygen self‐enriched theranostic nanoparticles are developed by synthesizing chlorin e6 (Ce6) conjugated hyaluronic acid (HA) with reducible disulfide bonds (HSC) and encapsulating perfluorohexane (PFH) within the nanoparticles (PFH@HSC). The fluorescence and phototoxicity of PFH@HSC nanoparticles are greatly inhibited by a self‐quenching effect in an aqueous environment. However, after accumulating in tumors through passive and active tumor‐targeting, PFH@HSC appear to be activated from “OFF” to “ON” in photoactivity by the redox‐responsive destruction of the vehicle's structure. In addition, PFH@HSC can load oxygen within lungs during blood circulation, and the oxygen dissolved in PFH is slowly released and diffuses over the entire tumor, finally resulting in remarkable tumor hypoxia relief and enhancement of PDT efficacy by generating more singlet oxygen. Taking advantage of the excellent imaging performance of Ce6, the tumor accumulation of PFH@HSC can be monitored by fluorescent and photoacoustic imaging after intravenous administration into tumor‐bearing mice. This PFH@HSC nanoparticle might have good potential for dual imaging‐guided PDT in hypoxic solid tumor treatment.  相似文献   

9.
Tumor hypoxia and chemoresistance are long‐lasting challenges in clinical cancer treatments resulting in treatment failures and low patient survival rates. Application of phototherapies to treat deep tissue‐buried tumors has been hampered by the lack of near infrared photosensitizers, and consumption of tissue oxygen, worsening the tumor hypoxia problem. Herein, an unprecedented theranostic lanthanum hexaboride‐based nanodrug is engineered to act as bimodal computed tomographic/magnetic resonance imaging contrast agents, absorb long near infrared (NIR) light in the biological window IIb (1500–1700 nm), generate hydroxyl radicals without using oxygen, and destroy drug‐resistant NCI‐H23 lung tumors completely, leading to an amazingly long average half‐life of 180 days, far exceeding than those of doxorubicin‐treated (21 days) and untreated mice groups (13 days). This work pioneers the field of photodynamic therapy in conquering hypoxia and chemodrug resistance problems for NIR‐IIb oxygen‐independent cancer treatments.  相似文献   

10.
11.
Nanomedicine is a promising approach for combination chemotherapy of triple‐negative breast cancer (TNBC). However, the therapeutic efficacy of nanoparticulate drugs is suppressed by a series of biological barriers. The authors herein present a programmed stimuli‐responsive liposomal vesicle to overcome the sequential barriers for enhanced TNBC therapy. The intelligent vesicles are engineered by integrating an enzyme‐cleavable polyethylene glycol (PEG) corona, a light‐responsive photosensitizer pheophorbide a (PPa), and a temperature‐sensitive liposome (TSL) into a single nanoplatform. The resultant enzyme, light, and temperature multisensitive liposome (ELTSL) is sequentially coloaded with a lipophilic oxaliplatin prodrug of hexadecyl‐oxaliplatin carboxylic acid (HOC) and hydrophilic doxorubicin hydrochloride (DOX). Dual drug‐loaded ELTSL displays enhanced tumor penetration and increased cellular uptake upon matrix metalloproteinase 2 mediated cleavage of the PEG corona. Under NIR laser irradiation, PPa induces mild hyperthermia effect to trigger ultrafast drug release in the tumor cells. In combination with PPa‐mediated photodynamic therapy, HOC and DOX coloaded ELTSL show significantly improved antitumor efficacy than monotherapy. Given the clinically translatable potential of the liposomal vesicles, ELTSL might represent a promising nanoplatform for combination TNBC therapy.  相似文献   

12.
Smart nanocarriers are of particular interest for highly effective photodynamic therapy (PDT) in the field of precision nanomedicine. Nevertheless, a critical challenge still remains in the exploration of potent PDT treatment against hypoxic tumor. Herein, light‐triggered clustered polymeric vesicles for photoinduced hypoxic tumor ablation are demonstrated, which are able to deeply penetrate into the tumor and simultaneously afford oxygen supply upon light irradiation. Hydrogen peroxide (H2O2) and poly(amidoamine) dendrimer conjugating chlorin e6/cypate (CC‐PAMAM) are coassembled with reactive‐oxygen‐species‐responsive triblock copolymer into the polymeric vesicles. Upon 805 nm irradiation, the vesicles exhibit the light‐triggered thermal effect that is able to decompose H2O2 into O2, which distinctly ensures the alleviation of tumor hypoxia at tumor. Followed by 660 nm irradiation, the vesicles are rapidly destabilized through singlet oxygen‐mediated cleavage of copolymer under light irradiation and thus allow the release of photoactive CC‐PAMAM from the vesicular chambers, followed by their deep penetration in the poorly permeable tumor. Consequently, the light‐triggered vesicles with both self‐supplied oxygen and deep tissue penetrability achieve the total ablation of hypoxic hypopermeable pancreatic tumor through photodynamic damage. These findings represent a general and smart nanoplatform for effective photoinduced treatment against hypoxic tumor.  相似文献   

13.
Local hypoxia in tumors results in undesirable impediments for the efficiencies of oxygen‐dependent chemical and photodynamic therapy (PDT). Herein, a versatile oxygen‐generating and pH‐responsive nanoplatform is developed by loading MnO2 nanodots onto the nanosystem that encapsulates g‐C3N4 and doxorubicin hydrochloride to overcome the hypoxia‐caused resistance in cancer therapy. The loaded MnO2 nanodots can react with endogenous acidic H2O2 to elevate the dissolved oxygen concentration, leading to considerably enhanced cancer therapy efficacy. As such, the as‐prepared nanoplatform with excellent dispersibility and satisfactory biocompatibility can sustainably increase the oxygen concentration and rapidly release the encapsulated drugs in acid H2O2 environment. In vitro cytotoxicity experiments show a higher therapy effect by the designed nanoplatform, when compared to therapy without MnO2 nanodots under hypoxia condition, or chemical and photodynamic therapy alone with the presence of MnO2 nanodots. In vivo experiments also demonstrate that 4T1 tumors can be very efficiently eliminated by the designed nanoplatform under light irradiation. These results highlight that the MnO2 nanodots‐based nanoplatform is promising for elevating the oxygen level in tumor microenvironments to overcome hypoxia limitations for high‐performance cancer therapy.  相似文献   

14.
Hypoxia not only promotes tumor metastasis but also strengthens tumor resistance to therapies that demand the involvement of oxygen, such as radiation therapy and photodynamic therapy (PDT). Herein, taking advantage of the high reactivity of manganese dioxide (MnO2) nanoparticles toward endogenous hydrogen peroxide (H2O2) within the tumor microenvironment to generate O2, multifunctional chlorine e6 (Ce6) loaded MnO2 nanoparticles with surface polyethylene glycol (PEG) modification (Ce6@MnO2‐PEG) are formulated to achieve enhanced tumor‐specific PDT. In vitro studies under an oxygen‐deficient atmosphere uncover that Ce6@MnO2‐PEG nanoparticles could effectively enhance the efficacy of light‐induced PDT due to the increased intracellular O2 level benefited from the reaction between MnO2 and H2O2, the latter of which is produced by cancer cells under the hypoxic condition. Owing to the efficient tumor homing of Ce6@MnO2‐PEG nanoparticles upon intravenous injection as revealed by T1‐weighted magnetic resonance imaging, the intratumoral hypoxia is alleviated to a great extent. Thus, in vivo PDT with Ce6@MnO2‐PEG nanoparticles even at a largely reduced dose offers remarkably improved therapeutic efficacy in inhibiting tumor growth compared to free Ce6. The results highlight the promise of modulating unfavorable tumor microenvironment with nanotechnology to overcome current limitations of cancer therapies.  相似文献   

15.
A sequentially responsive photosensitizer‐integrated biopolymer is developed for tumor‐specific photodynamic therapy, which is capable of forming long‐retained aggregates in situ inside tumor tissues. Specifically, the photosensitizer zinc phthalocyanine (ZnPc) is conjugated with polyethylene glycol (PEG) via pH‐labile maleic acid amide linker and then immobilized onto the hyaluronic acid (HA) chain using a redox‐cleavable disulfide linker. The PEG segment can enhance blood circulation of the molecular carrier after intravenous administration and be shed after reaching the acidic tumor microenvironment, allowing the remaining fragment to self‐assemble into large clusters in situ to avoid backward diffusion and improve tumor retention. This process is driven by hydrophobic interactions and does not require additional external actuation. The aggregates are then internalized by the tumor cells via HA‐facilitated endocytosis, and the high glutathione level in tumor cells eventually leads to the intracellular release of ZnPc to facilitate its interaction with the subcellular lipid structures. This tumor‐triggered morphology‐based delivery platform is constructed with clinically tested components and could potentially be applied to other hydrophobic therapeutics.  相似文献   

16.
17.
Many immune cells are capable of homing to sites of disease and eradicating infections and abnormal cells. However, their efficacy is usually down‐regulated in tumor microenvironments and it is difficult to boost. It is presumed that the anticancer activity of immune cells can be improved by integrating an additional therapeutic modality such as chemotherapy into the cells. Here, Ly6Chi monocytes armed with the paclitaxel (PTX)‐loading pH‐sensitive micelle (PM), termed as PM@MC, are prepared. The PM internalization does not significantly affect the properties of the host Ly6Chi monocytes. In the 4T1 metastatic breast cancer mice model, PM@MCs home to both primary tumor and the lung metastasis foci. PM@MC exhibit 15‐fold higher intratumor PTX accumulation than the commercial PTX injection, and achieve a tumor inhibiting rate of 96.8% and a lung metastasis suppression rate of 99.2%. No significant change is recorded in histology of major organs and in hematological and biochemical parameters after PM@MC treatment. The pH‐sensitive micelle/Ly6Chi monocyte drug delivery device thus has the application potential in the targeting therapy of breast cancer with metastasis.  相似文献   

18.
Immunogenic cancer cell death (ICD) is drawing worldwide attention as it allows dying cancer cells to regulate the host's anti‐tumor immune system and awaken immunosurveillance. Thus, effectively activating therapy‐induced ICD is of great clinical significance to raise systemic anti‐tumor immunity and eradicate post‐treatment/abscopal cancer tissues. Enhanced cytotoxic reactive oxygen species (ROS) generation in cancer therapy has been positively correlated to ICD induction, which inspires design of a therapy‐induced ICD amplifier. The nanohybrid amplifier (FeOOH@STA/Cu‐LDH) is devised based on Cu‐containing layered double hydroxide (Cu‐LDH), incorporating ROS inducer (FeOOH nanodots), ROS generation booster (Cu‐LDH for photothermal therapy), and heat shock protein inhibitor (STA). Treating 4T1 tumor cells with this amplifier translocates calreticulins (CRT, one of main ICD signals) on the surface of dying cancer cells, which achieves the maximum at fever‐type temperature (40–42 °C). To demonstrate immunotherapeutic efficacy of this nanohybrid, 4T1 tumor‐bearing mouse model is established with primary and abscopal tumors. Significantly, only one treatment with the ICD amplifier eradicates the primary tumor and inhibits the abscopal tumor growth upon fever‐type heating and induces more cytotoxic T lymphocytes in abscopal tumors and spleens after treatment for 1 week. This research thus provides a new insight into nanomaterial‐mediated tumor immunotherapy.  相似文献   

19.
20.
Photodynamic therapy (PDT) by insertion of an optical fiber into the bladder cavity has been applied in the clinic for noninvasive treatment of bladder tumors. To avoid systemic phototoxicity, bladder intravesical instillation of a photosensitizer may be an ideal approach for PDT treatment of bladder cancer, in comparison to conventional intravenous injection. However, the instillation‐based PDT for bladder cancer treatment remains to be less effective due to the poor urothelial uptake of photosensitizer, as well as the tumor hypoxia‐associated PDT resistance. Herein, it is uncovered that fluorinated polyethylenimine (F‐PEI) achieved by mixing with Chorin‐e6‐conjugated catalase (CAT‐Ce6) is able to form self‐assembled CAT‐Ce6/F‐PEI nanoparticles, which show greatly improved cross‐membrane, transmucosal, and intratumoral penetration capacities compared with CAT‐Ce6 alone or nonfluorinated CAT‐Ce6/PEI nanoparticles. Owing to the decomposition of tumor endogenous H2O2 by CAT‐Ce6/F‐PEI nanoparticles penetrating into bladder tumors, the tumor hypoxia would be effectively relieved to further favor PDT. Therefore, bladder intravesical instillation with CAT‐Ce6/F‐PEI nanoparticles could offer remarkably improved photodynamic therapeutic effect to destruct orthotopic bladder tumors with reduced systemic toxicity compared to hematoporphyrin, the first‐line photosensitizer used for bladder cancer PDT in clinic. This work presents a unique photosensitizer nanomedicine formulation, promising for clinical translation in instillation‐based PDT to treat bladder tumors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号