首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Facile electron injection and extraction are two key attributes desired in electron transporting layers to enhance the efficiency of planar perovskite solar cells. Herein it is demonstrated that the incorporation of alkali metal dopants in mesoporous TiO2 can effectively modulate electronic conductivity and improve the charge extraction process by counterbalancing oxygen vacancies acting as nonradiative recombination centers. Moreover, sulfate bridges (SO42?) grafted on the surface of K‐doped mesoporous titania provide a seamless integration of absorber and electron‐transporting layers that accelerate overall transport kinetics. Potassium doping markedly influences the nucleation of the perovskite layer to produce highly dense films with facetted crystallites. Solar cells made from K:TiO2 electrodes exhibit power conversion efficiencies up to 21.1% with small hysteresis despite all solution coating processes conducted under ambient air conditions (controlled humidity: 25–35%). The higher device efficiencies are attributed to intrinsically tuned electronic conductivity and chemical modification of grain boundaries enabling uniform coverage of perovskite films with large grain size.  相似文献   

2.
Molecular doping is a powerful yet challenging technique for enhancing charge transport in organic semiconductors (OSCs). While there is a wealth of research on p‐type dopants, work on their n‐type counterparts is comparatively limited. Here, reported is the previously unexplored n‐dopant (12a,18a)‐5,6,12,12a,13,18,18a,19‐octahydro‐5,6‐dimethyl‐ 13,18[1′,2′]‐benzenobisbenzimidazo [1,2‐b:2′,1′‐d]benzo[i][2.5]benzodiazo‐cine potassium triflate adduct (DMBI‐BDZC) and its application in organic thin‐film transistors (OTFTs). Two different high electron mobility OSCs, namely, the polymer poly[[N,N′‐bis(2‐octyldodecyl)‐naphthalene‐1,4,5,8‐ bis(dicarboximide)‐2,6‐diyl]‐alt‐5,5′‐(2′‐bithiophene)] and a small‐molecule naphthalene diimides fused with 2‐(1,3‐dithiol‐2‐ylidene)malononitrile groups (NDI‐DTYM2) are used to study the effectiveness of DMBI‐BDZC as a n‐dopant. N‐doping of both semiconductors results in OTFTs with improved electron mobility (up to 1.1 cm2 V?1 s?1), reduced threshold voltage and lower contact resistance. The impact of DMBI‐BDZC incorporation is particularly evident in the temperature dependence of the electron transport, where a significant reduction in the activation energy due to trap deactivation is observed. Electron paramagnetic resonance measurements support the n‐doping activity of DMBI‐BDZC in both semiconductors. This finding is corroborated by density functional theory calculations, which highlights ground‐state electron transfer as the main doping mechanism. The work highlights DMBI‐BDZC as a promising n‐type molecular dopant for OSCs and its application in OTFTs, solar cells, photodetectors, and thermoelectrics.  相似文献   

3.
Direct optical probing of the doping progression and simultaneous recording of the current–time behavior allows the establishment of the position of the light‐emitting p–n junction, the doping concentrations in the p‐ and n‐type regions, and the turn‐on time for a number of planar light‐emitting electrochemical cells (LECs) with a 1 mm interelectrode gap. The position of the p–n junction in such LECs with Au electrodes contacting an active material mixture of poly(2‐methoxy‐5‐(2′‐ethylhexyloxy)‐p‐phenylene vinylene) (MEH‐PPV), poly(ethylene oxide), and a XCF3SO3 salt (X = Li, K, Rb) is dependent on the salt selection: for X = Li the p–n junction is positioned very close to the negative electrode, while for X = K, Rb it is significantly more centered in the interelectrode gap. Its is demonstrated that this results from that the p‐type doping concentration is independent of salt selection at ca. 2 × 1020 cm–3 (ca. 0.1 dopants/MEH‐PPV repeat unit), while the n‐type doping concentration exhibits a strong dependence: for X = K it is ca. 5 × 1020 cm–3 (ca. 0.2 dopants/repeat unit), for X = Rb it is ca. 9 × 1020 cm–3 (ca. 0.4 dopants/repeat unit), and for X = Li it is ca. 3 × 1021 cm–3 (ca. 1 dopants/repeat unit). Finally, it is shown that X = K, Rb devices exhibit significantly faster turn‐on times than X = Li devices, which is a consequence of a higher ionic conductivity in the former devices.  相似文献   

4.
Molecular doping is a key technique for flexible and low‐cost organic complementary semiconductor technologies that requires both efficient and stable p‐ and n‐type doping. However, in contrast to molecular p‐dopants, highly efficient n‐type dopants are commonly sensitive to rapid degradation in air due to their low ionization energies (IEs) required for electron donation, e.g., IE = 2.4 eV for tetrakis(1,3,4,6,7,8‐hexahydro‐2H‐pyrimido[1,2‐a]pyrimidinato)ditungsten(II) (W2(hpp)4). Here, the air stability of various host:W2(hpp)4 combinations is compared by conductivity measurements and photoemission spectroscopy. A partial passivation of the n‐doping against degradation is found, with this effect identified to depend on the specific energy levels of the host material. Since host‐W2(hpp)4 electronic wavefunction hybridization is unlikely due to confinement of the dopant highest occupied molecular orbital (HOMO) to its molecular center, this finding is explained via stabilization of the dopant by single‐electron transfer to a host material whose energy levels are sufficiently low for avoiding further charge transfer to oxygen–water complexes. Our results show the feasibility of temporarily handling n‐doped organic thin films in air, e.g., during structuring of organic field effect transistors (OFETs) by lithography.  相似文献   

5.
Cesium azide (CsN3) is employed as a novel n‐dopant because of its air stability and low deposition temperature. CsN3 is easily co‐deposited with the electron transporting materials in an organic molecular beam deposition chamber so that it works well as an n‐dopant in the electron transport layer because its evaporation temperature is similar to that of common organic materials. The driving voltage of the p‐i‐n device with the CsN3‐doped n‐type layer and a MoO3‐doped p‐type layer is greatly reduced, and this device exhibits a very high power efficiency (57 lm W?1). Additionally, an n‐doping mechanism study reveals that CsN3 was decomposed into Cs and N2 during the evaporation. The charge injection mechanism was investigated using transient electroluminescence and capacitance–voltage measurements. A very highly efficient tandem organic light‐emitting diodes (OLED; 84 cd A?1) is also created using an n–p junction that is composed of the CsN3‐doped n‐type organic layer/MoO3 p‐type inorganic layer as the interconnecting unit. This work demonstrates that an air‐stable and low‐temperature‐evaporable inorganic n‐dopant can very effectively enhance the device performance in p‐i‐n and tandem OLEDs, as well as simplify the material handling for the vacuum deposition process.  相似文献   

6.
All organic charge‐transporting layer (CTL)‐featured perovskite solar cells (PSCs) exhibit distinct advantages, but their scaling‐up remains a great challenge because the organic CTLs underneath the perovskite are too thin to achieve large‐area homogeneous layers by spin‐coating, and their hydrophobic nature further hinders the solution‐based fabrication of perovskite layer. Here, an unprecedented anchoring‐based coassembly (ACA) strategy is reported that involves a synergistic coadsorption of a hydrophilic ammonium salt CA‐Br with hole‐transporting triphenylamine derivatives to acquire scalable and wettable organic hole‐extraction monolayers for p–i–n structured PSCs. The ACA route not only enables ultrathin organic CTLs with high uniformity but also eliminates the nonwetting problem to facilitate large‐area perovskite films with 100% coverage. Moreover, incorporation of CA‐Br in the ACA strategy can distinctly guarantee a high quality of electronic connection via the cations' vacancy passivation. Consequently, a high power‐conversion‐efficiency (PCE) of 17.49% is achieved for p–i–n structured PSCs (1.02 cm2), and a module with an aperture area of 36 cm2 shows PCE of 12.67%, one of the best scaling‐up results among all‐organic CTL‐based PSCs. This work demonstrates that the ACA strategy can be a promising route to large‐area uniform interfacial layers as well as scaling‐up of perovskite solar cells.  相似文献   

7.
Molecular doping of organic semiconductors and devices represents an enabling technology for a range of emerging optoelectronic applications. Although p‐type doping has been demonstrated in a number of organic semiconductors, efficient n‐type doping has proven to be particularly challenging. Here, n‐type doping of solution‐processed C60, C70, [60]PCBM, [70]PCBM and indene‐C60 bis‐adduct by 1H‐benzimidazole (N‐DMBI) is reported. The doping efficiency for each system is assessed using field‐effect measurements performed under inert atmosphere at room temperature in combination with optical absorption spectroscopy and atomic force microscopy. The highest doping efficiency is observed for C60 and C70 and electron mobilities up to ≈2 cm2/Vs are obtained. Unlike in substituted fullerenes‐based transistors where the electron mobility is found to be inversely proportional to N‐DMBI concentration, C60 and C70 devices exhibit a characteristic mobility increase by approximately an order of magnitude with increasing dopant concentration up to 1 mol%. Doping also appears to significantly affect the bias stability of the transistors. The work contributes towards understanding of the molecular doping mechanism in fullerene‐based semiconductors and outlines a simple and highly efficient approach that enables significant improvement in device performance through facile chemical doping.  相似文献   

8.
Chemical doping of graphene represents a powerful means of tailoring its electronic properties. Synchrotron‐based X‐ray spectroscopy offers an effective route to investigate the surface electronic and chemical states of functionalizing dopants. In this work, a suite of X‐ray techniques is used, including near edge X‐ray absorption fine structure spectroscopy, X‐ray photoemission spectroscopy, and photoemission threshold measurements, to systematically study plasma‐based chlorinated graphene on different substrates, with special focus on its dopant concentration, surface binding energy, bonding configuration, and work function shift. Detailed spectroscopic evidence of C–Cl bond formation at the surface of single layer graphene and correlation of the magnitude of p‐type doping with the surface coverage of adsorbed chlorine is demonstrated for the first time. It is shown that the chlorination process is a highly nonintrusive doping technology, which can effectively produce strongly p‐doped graphene with the 2D nature and long‐range periodicity of the electronic structure of graphene intact. The measurements also reveal that the interaction between graphene and chlorine atoms shows strong substrate effects in terms of both surface coverage and work function shift.  相似文献   

9.
For commercial applications, it is a challenge to find suitable and low‐cost hole‐transporting material (HTM) in perovskite solar cells (PSCs), where high efficiency spiro‐OMeTAD and PTAA are expensive. A HTM based on 9,9‐dihexyl‐9H‐fluorene and N,N‐di‐p‐methylthiophenylamine (denoted as FMT) is designed and synthesized. High‐yield FMT with a linear structure is synthesized in two steps. The dopant‐free FMT‐based planar p‐i‐n perovskite solar cells (pp‐PSCs) exhibit a high power conversion efficiency (PCE) of 19.06%, which is among the highest PCEs reported for the pp‐PSCs based on organic HTM. For comparison, a PEDOT:PSS HTM‐based pp‐PSC is fabricated under the same conditions, and its PCE is found to be 13.9%.  相似文献   

10.
This study reports an effective amidine‐type n‐dopant of 1,8‐Diazabicyclo[5.4.0]undec‐7‐ene (DBU) that can universally dope electron acceptors, including PC61BM, N2200, and ITIC, by mixing the dopant with the acceptors in organic solvents or exposing the acceptor films in the dopant vapor. The doping mechanism is due to its strong electron‐donating property that is also confirmed via the chemical reduction of PEDOT:PSS (yielding color change). The DBU doping considerably increases the electrical conductivity and shifts the Fermi levels up of the PC61BM films. When the DBU‐doped PC61BM is used as an electron‐transporting layer in perovskite solar cells, the n‐doping removes the “S‐shape” of JV characteristics, which leads to the fill factor enhancement from 0.54 to 0.76. Furthermore, the DBU doping can effectively lower the threshold voltage and enhance the electron mobility of PC61BM‐based n‐channel field‐effect transistors. These results show that the DBU can be a promising n‐dopant for solution‐processed electronics.  相似文献   

11.
Organic–inorganic hybrid perovskites have realized a high power conversion efficiency (PCE) in both n–i–p and p–i–n device configurations. However, since the p–i–n structure exempts the sophisticated processing of charge‐transporting layers, it seems to possess better potential for practical applications than the n–i–p one. Currently, the inorganic NiOx is the most prevailing hole‐transporting layer (HTL) used in p–i–n perovskite solar cells. Nevertheless, defects might exist on its surface to influence the charge transfer/extraction across the interface with perovskite and to affect the quality of the perovskite film grown on it. Herein, two novel [7]helicenes with stable open‐shell singlet biradical ground states at room temperature are demonstrated as an effective surface modifier of the NiOx HTL. Their nonpolar feature effectively promotes the crystallinity of the perovskite film grown on them; meanwhile, their unique partial biradical character seems to provide a certain degree of defect passivation function at the perovskite interface to facilitate interfacial charge transfer/extraction. As a result, both 1ab‐ and 1bb‐modifed devices yield a PCE of >18%, exceeding the value (15.6%) of the control device using a sole NiOx HTL, and the maximum PCE can reach 19%. Detailed characterizations are carefully conducted to understand the underlying reasons behind such enhancement.  相似文献   

12.
Sn‐based perovskites are promising Pb‐free photovoltaic materials with an ideal 1.3 eV bandgap. However, to date, Sn‐based thin film perovskite solar cells have yielded relatively low power conversion efficiencies (PCEs). This is traced to their poor photophysical properties (i.e., short diffusion lengths (<30 nm) and two orders of magnitude higher defect densities) than Pb‐based systems. Herein, it is revealed that melt‐synthesized cesium tin iodide (CsSnI3) ingots containing high‐quality large single crystal (SC) grains transcend these fundamental limitations. Through detailed optical spectroscopy, their inherently superior properties are uncovered, with bulk carrier lifetimes reaching 6.6 ns, doping concentrations of around 4.5 × 1017 cm?3, and minority‐carrier diffusion lengths approaching 1 µm, as compared to their polycrystalline counterparts having ≈54 ps, ≈9.2 × 1018 cm?3, and ≈16 nm, respectively. CsSnI3 SCs also exhibit very low surface recombination velocity of ≈2 × 103 cm s?1, similar to Pb‐based perovskites. Importantly, these key parameters are comparable to high‐performance p‐type photovoltaic materials (e.g., InP crystals). The findings predict a PCE of ≈23% for optimized CsSnI3 SCs solar cells, highlighting their great potential.  相似文献   

13.
Efficient synthesis of a series of terminally dicyanovinyl (DCV)‐substituted oligothiophenes, DCVnT 1–6, without solubilizing side chains synthesized via a novel convergent approach and their application as electron donors in vacuum‐processed m‐i‐p‐type planar and p‐i‐n‐type bulk heterojunction organic solar cells is described. Purification of the products via gradient sublimation yields thermally highly stable organic semiconducting materials in single crystalline quality which allows for X‐ray structure analysis. Important insights into the packing features and intermolecular interactions of these promising solar cell materials are provided. Optical absorption spectra and electrochemical properties of the oligomers are investigated and valuable structure–property relationships deduced. Photovoltaic devices incorporating DCVnTs 4–6 showed power conversion efficiencies up to 2.8% for planar and 5.2% for bulk heterojunction organic solar cells under full sun illumination (mismatch corrected simulated AM 1.5G sunlight). The 5.2% efficiency shown here represents one of the highest values ever reported for organic vacuum‐deposited single heterojunction solar cells.  相似文献   

14.
The doping of semiconductors plays a critical role in improving the performance of modern electronic devices by precisely controlling the charge carrier density. However, the absence of a stable doping method for p‐type oxide semiconductors has severely restricted the development of metal oxide‐based transparent p–n junctions and complementary circuits. Here, an efficient and stable doping process for p‐type oxide semiconductors by using molecule charge transfer doping with tetrafluoro‐tetracyanoquinodimethane (F4TCNQ) is reported. The selections of a suitable dopant and geometry play a crucial role in the charge‐transfer doping effect. The insertion of a F4TCNQ thin dopant film (2–7 nm) between a Au source‐drain electrode and solution‐processed p‐type copper oxide (CuxO) film in bottom‐gate top‐contact thin‐film transistors (TFTs) provides a mobility enhancement of over 20‐fold with the desired threshold voltage adjustment. By combining doped p‐type CuxO and n‐type indium gallium zinc oxide TFTs, a solution‐processed transparent complementary metal‐oxide semiconductor inverter is demonstrated with a high gain voltage of 50. This novel p‐doping method is expected to accelerate the development of high‐performance and reliable p‐channel oxide transistors and has the potential for widespread applications.  相似文献   

15.
A high‐quality polycrystalline SnO2 electron‐transfer layer is synthesized through an in situ, low‐temperature, and unique butanol–water solvent‐assisted process. By choosing a mixture of butanol and water as a solvent, the crystallinity is enhanced and the crystallization temperature is lowered to 130 °C, making the process fully compatible with flexible plastic substrates. The best solar cells fabricated using these layers achieve an efficiency of 20.52% (average 19.02%) which is among the best in the class of planar n–i–p‐type perovskite (MAPbI3) solar cells. The strongly reduced crystallization temperature of the materials allows their use on a flexible substrate, with a resulting device efficiency of 18%.  相似文献   

16.
To achieve high‐performance large‐area flexible polymer solar cells (PSCs), one of the challenges is to develop new interface materials that possess a thermal‐annealing‐free process and thickness‐insensitive photovoltaic properties. Here, an n‐type self‐doping fullerene electrolyte, named PCBB‐3N‐3I, is developed as electron transporting layer (ETL) for the application in PSCs. PCBB‐3N‐3I ETL can be processed at room temperature, and shows excellent orthogonal solvent processability, substantially improved conductivity, and appropriate energy levels. PCBB‐3N‐3I ETL also functions as light‐harvesting acceptor in a bilayer solar cell, contributing to the overall device performance. As a result, the PCBB‐3N‐3I ETL‐based inverted PSCs with a PTB7‐Th:PC71BM photoactive layer demonstrate an enhanced power conversion efficiency (PCE) of 10.62% for rigid and 10.04% for flexible devices. Moreover, the device avoids a thermal annealing process and the photovoltaic properties are insensitive to the thickness of PCBB‐3N‐3I ETL, yielding a PCE of 9.32% for the device with thick PCBB‐3N‐3I ETL (61 nm). To the best of one's knowledge, the above performance yields the highest efficiencies for the flexible PSCs and thick ETL‐based PSCs reported so far. Importantly, the flexible PSCs with PCBB‐3N‐3I ETL also show robust bending durability that could pave the way for the future development of high‐performance flexible solar cells.  相似文献   

17.
Planar perovskite solar cells (PSCs) based on low‐temperature‐processed (LTP) SnO2 have demonstrated excellent photovoltaic properties duo to the high electron mobility, wide bandgap, and suitable band energy alignment of LTP SnO2. However, planar PSCs or mesoporous (mp) PSCs based on high‐temperature‐processed (HTP) SnO2 show much degraded performance. Here, a new strategy with fully HTP Mg‐doped quantum dot SnO2 as blocking layer (bl) and a quite thin SnO2 nanoparticle as mp layer are developed. The performances of both planar and mp PSCs has been greatly improved. The use of Mg‐SnO2 in planar PSCs yields a high‐stabilized power conversion efficiency (PCE) of close to 17%. The champion of mp cells exhibits hysteresis free and stable performance with a high‐stabilized PCE of 19.12%. The inclusion of thin mp SnO2 in PSCs not only plays a role of an energy bridge, facilitating electrons transfer from perovskite to SnO2 bl, but also enhances the contact area of SnO2 with perovskite absorber. Impedance analysis suggests that the thin mp layer is an “active scaffold” selectively collecting electrons from perovskite and can eliminate hysteresis and effectively suppress recombination. This is an inspiring advance toward high‐performance PSCs with HTP mp SnO2.  相似文献   

18.
A planar surface cell structure has been utilized to investigate a polymer light‐emitting electrochemical cell (LEC), consisting of an active‐material mixture of poly[2‐methoxy‐5‐(2′‐ethylhexyloxy)‐1,4‐phenylenevinylene] (MEH‐PPV) and an ionic liquid, tetra‐n‐butylammonium trifluoromethanesulfonate, contacted by Au electrodes. It is shown that diffuse and needle‐shaped doping fronts originate from the electrodes (p‐type from the positive electrode and n‐type from the negative electrode) during the charging process at a temperature (T) of 393 K. After a turn‐on time, a significant portion of the doping fronts makes contact close to the negative electrode to form a light‐emitting p–i–n junction, but at some points p‐type doping protrudes all the way to the negative electrode to form what are effectively micro shorts. It is shown that the consequences of such doping‐induced micro shorts during a subsequent stabilized “frozen junction” operation at T = 200 K are drastic: the current‐rectification ratio (RR) is low and the quantum efficiency (QE) is far from optimum. Both RR and QE increase significantly during long‐term operation under frozen‐junction conditions, demonstrating that the lifetime of the doping‐induced micro shorts is limited even under such stabilized conditions. Still, it is clear that it is critical for the optimization and further development of LECs to find new types of active material and electrode combinations that allow for formation of a continuous p–i–n junction in the center of the interelectrode gap.  相似文献   

19.
The selective tuning of the operational mode from ambipolar to unipolar transport in organic field‐effect transistors (OFETs) by printing molecular dopants is reported. The field‐effect mobility (μFET) and onset voltage (Von) of both for electrons and holes in initially ambipolar methanofullerene [6,6]‐phenyl‐C61‐butyric acid methyl ester (PCBM) OFETs are precisely modulated by incorporating a small amount of cesium fluoride (CsF) n‐type dopant or tetrafluoro‐tetracyanoquinodimethane (F4‐TCNQ) p‐type dopant for n‐channel or p‐channel OFETs either by blending or inkjet printing of the dopant on the pre‐deposited semiconductor. Excess carriers introduced by the chemical doping compensate traps by shifting the Fermi level (EF) toward respective transport energy levels and therefore increase the number of mobile charges electrostatically accumulated in channel at the same gate bias voltage. In particular, n‐doped OFETs with CsF show gate‐voltage independent Ohmic injection. Interestingly, n‐ or p‐doped OFETs show a lower sensitivity to gate‐bias stress and an improved ambient stability with respect to pristine devices. Finally, complementary inverters composed of n‐ and p‐type PCBM OFETs are demonstrated by selective doping of the pre‐deposited semiconductor via inkjet printing of the dopants.  相似文献   

20.
We present an approach to stable n‐type doping of organic matrices using organic dopants. In order to circumvent stability limitations inherent to strong organic donors, we produce the donor from a stable precursor compound in situ. As an example, the cationic dye pyronin B chloride is studied as a dopant in a 1,4,5,8‐naphthalene tetracarboxylic dianhydride (NTCDA) matrix. Conductivities of up to 1.9 × 10–4 S cm–1 are obtained for doped NTCDA, two orders of magnitude higher than the conductivity of NTCDA doped with bis(ethylenedithio)‐tetrathiafulvalene as investigated previously, and four orders of magnitude higher than nominally undoped NTCDA films. Field‐effect measurements are used to prove n‐type conduction and to study the doping effect further. The findings are interpreted using a model of transport in disordered solids using a recently published model. Combined FTIR, UV‐vis, and mass spectroscopy investigations suggest the formation of leuco pyronin B during sublimation of pyronin B chloride.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号