首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The demands for waste heat energy recovery from industrial production, solar energy, and electronic devices have resulted in increasing attention being focused on thermoelectric materials. Over the past two decades, significant progress is achieved in inorganic thermoelectric materials. In addition, with the proliferation of wireless mobile devices, economical, efficient, lightweight, and bio‐friendly organic thermoelectric (OTE) materials have gradually become promising candidates for thermoelectric devices used in room‐temperature environments. With the development of experimental measurement techniques, the manufacturing for nanoscale thermoelectric devices has become possible. A large number of studies have demonstrated the excellent performance of nanoscale thermoelectric devices, and further improvement of their thermoelectric conversion efficiency is expected to have a significant impact on global energy consumption. Here, the development of experimental measurement methods, theoretical models, and performance modulation for nanoscale OTE materials are summarized. Suggestions and prospects for the future development of these devices are also provided.  相似文献   

2.
Organic thermoelectric (OTE) materials promise convenient energy conversion between heat gradients and voltage with flexible and wearable power-supplying devices at a low price. Although a variety of OTE materials are investigated, the TE performance is still far from practical application. To achieve high TE performance, a thorough understanding of the structure–property relationship in OTE materials is necessary. In this comprehensive review, the fundamentals of OTEs are summarized, the recent achievements of OTE materials are reviewed, and the relationship between structure and properties in high-performance OTE materials is discussed. Furthermore, how the molecular backbones, side chains, energy levels, molecular packing, and heteroatom effect all play vital roles in thermoelectric properties is addressed. Finally, the future direction of research on OTE materials is envisaged.  相似文献   

3.
Exhaustive attempts are made in recent decades to improve the performance of thermoelectric materials that are utilized for waste heat‐to‐electricity conversion. Energy filtering of charge carriers is directed toward enhancing the material thermopower. This paper focuses on the theoretical concepts, experimental evidence, and the authors' view of energy filtering in the context of thermoelectric materials. Recent studies suggest that not all materials experience this effect with the same intensity. Although this effect theoretically demonstrates improvement of the thermopower, applying it poses certain constraints, which demands further research. Predicated on data documented in literature, the unusual dependence of the thermopower and conductivity upon charge carrier concentrations can be altered through the energy filtering approach. Upon surmounting the physical constraints discussed in this article, thermoelectric materials research may gain a new direction to enhance the power factor and thermoelectric figure of merit.  相似文献   

4.
Organic thermoelectric materials consisting of conducting polymers have received much attention recently because of their advantages such as wide availability of carbon, easy syntheses, easy processing, flexible devices, low cost, and low thermal conductivity. Nevertheless, their thermoelectric performance is still not good enough for practical use. To improve their performance, we present herein new kinds of hybrids of organic conducting polymers and metal nanoparticles (NPs). Since hybridization of polyaniline with poly-(N-vinyl-2-pyrrolidone) (PVP)-protected Au NPs decreased the electrical conductivity of polyaniline films from 150?S?cm?1 to 50?S?cm?1, we carried out direct hybridization of polyaniline with Au NPs without PVP in this study. Direct hybridization improved the electrical conductivity to as high as 330?S?cm?1 at 50°C while keeping the Seebeck coefficient at 15???V?m?1?K?2. Poly(3,4-ethylenedioxythiophene) (PEDOT) is another promising conducting polymer. Here, we used hybrid films of PEDOT with Au NPs protected by two kinds of ligands, terthiophenethiol and dodecanethiol (DT), revealing that the hybrid of PEDOT with DT-protected Au NPs showed better thermoelectric performance than pristine PEDOT without Au NPs. Addition of DT-protected Au NPs improved the electrical conductivity of the PEDOT films from 104?S?cm?1 to 241?S?cm?1 and the thermoelectric figure of merit from 0.62?×?10?2 to 1.63?×?10?2 at 50°C.  相似文献   

5.
Thermoelectric technology has attracted great attention due to its ability to recover and convert waste heat into readily available electric energy. Among the various candidate materials, liquid‐like compounds have received tremendous research interest on account of their intrinsically ultralow lattice thermal conductivity, tunable electrical properties, and high thermoelectric performance. Despite their complex phase transitions and diverse crystal structures, liquid‐like materials have two independent sublattices in common: one rigid sublattice formed by immobile ions for the free transport of electrons and one liquid‐like sublattice consisting of highly mobile ions to interrupt the thermal transports. This review first outlines the common structural features of liquid‐like thermoelectrics, along with their unusual electron and phonon transport behaviors that well satisfy the concept of “phonon‐liquid electron‐crystal.” Next, some commonly adopted strategies for further improving their thermoelectric performance are highlighted. The main progress achieved in the typical liquid‐like TE materials is then summarized, with an emphasis on their diverse crystal structures, common characteristics, and unique transport properties. The recent understandings on the stability issue of liquid‐like TE materials are also introduced. Finally, an outlook is given for the liquid‐like materials with the aim to boost further development in this exciting scientific subfield.  相似文献   

6.
7.
We report the thermoelectric properties of organic–inorganic hybrid thin films composed of conductive polymer, poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS), and inorganic gold nanomaterials. Two kinds of material with different shapes, namely rod-shaped gold nanorods (AuNRs) and spherical gold nanoparticles (AuNPs), were used in this study. The PEDOT:PSS/AuNR hybrid films showed an enhancement in electrical conductivity (σ ≈ 2000 S cm?1) and concurrently a decrease in the Seebeck coefficient (S ≈ 12 μV K?1) with increase in the AuNR concentration. This behavior indicates the presence of the hybrid effect of AuNR on the thermoelectric properties. From scanning electron microscopy (SEM) observation of the highly concentrated PEDOT:PSS/AuNR hybrid films, the formation of a percolated structure of AuNRs was confirmed, which probably contributed to the large enhancement in σ. For the highly concentrated PEDOT:PSS/AuNP films, a dense distribution of AuNPs in the film was also observed, but this did not lead to a major change in the σ value, probably due to the less conductive connections between NPs. This suggests that one-dimensional particles with larger aspect ratio (rods and wires) are favorable nanocomponents for development of highly conductive hybrid materials.  相似文献   

8.
Bulk nanostructured materials have recently emerged as a new paradigm for improving the performance of existing thermoelectric materials. Here, we fabricated two kinds of bulk nanostructured thermoelectric materials by a bottom-up strategy and an in situ precipitation method, respectively. Binary PbTe was fabricated by a combination of chemical synthesis and hot pressing. The grain sizes of the hot pressed bulk samples varied from 200 nm to 400 nm, which significantly contributed to the reduction of thermal conductivity due to the enhanced boundary phonon scattering. The highest figure of merit ZT of the binary PbTe sample reached 0.8 at 580 K. Mg2(Si,Sn) solid solutions have shown great promise for thermoelectric application, due to good thermoelectric properties, non-toxicity, and abundantly available constituent elements. The nanoscale microstructure observation of the compounds showed the existence of nanophases formed in situ, which is believed to be related to the relatively low lattice thermal conductivity in this material system. The highest ZT of Sb-doped Mg2(Si,Sn) samples reached 1.1 at 770 K.  相似文献   

9.
有机电致发光材料研究及器件初探   总被引:2,自引:0,他引:2  
谢明贵  蒋青 《光电子技术》1995,15(2):136-141
回顾了有机电致发光的发展历史,在前人研究的基础上,我们首先合成出发光物质三(8-羟基喹啉)合铝(AlQ3)和空穴输送层功能物质N,N'-二苯基-N,N'-(3-甲基苯基)-1,1'-联苯-4,4'-二胺(TBD)及相关物质.通过比较它们的荧光光谱,对材料的结构和发光性能之间的关系进行了研究,并从理论上对材料的选择作了初步讨论。在此基础上,探索了有机电致发光器件的制作。  相似文献   

10.
11.
The thermoelectric performance of thin films fabricated from two commercially available, highly conductive polymer formulations based on poly (3,4-ethylendioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) was investigated. In order to enhance the electrical conductivity, the high-boiling solvent dimethyl sulfoxide (DMSO) was added. By changing the content of DMSO the electrical conductivity was increased by a factor of two without changing the Seebeck coefficient or the thermal conductivity. We achieved ZT = 9.2 × 10−3 at room temperature upon the addition of 5 vol.% DMSO to the PEDOT:PSS formulation.  相似文献   

12.
This report reviews several existing and potential automotive applications of thermoelectric technology. Material and device issues related to automotive applications are discussed. Challenges for automotive thermoelectric applications are highlighted.  相似文献   

13.
随着热电材料与薄膜制备技术和性能研究手段的发展,具有高热电性能的热电薄膜和低维结构受到人们关注。目前,国内外研究主要集中在如何提高热电材料的能量转换率等核心技术问题上。介绍了热电材料的理论背景、材料分类、制备手段和热电性质的表征,其中,制备手段及热电性质表征主要以Bi2Te3基热电材料展开论述。最后,对热电材料的发展和未来研究方向进行总结。  相似文献   

14.
15.
The power output of a thermoelectric generator (TEG) was investigated under engine partial-load operation based on measured exhaust gas temperatures and mass flow rates. Materials with properties required for highend temperature TE couples (>500°C) were evaluated. Various possible material combinations for p- and n-legs of these couples as well as the conflicting targets of high efficiency and low cost as required for automotive mass production are discussed. New skutterudite materials for both p- and n-legs as identified during a joint research project are presented, which can help to overcome this conflict. Efficiencies >10% were achieved with these new materials, which have potentially twofold lower production costs than telluride-based materials due to the price of their elements. Some potential for improvement in efficiency and costs has been identified by developing highly integrated TEG units, specifically designed for automotive applications. These initial results of the material development and the evaluation of different integration concepts will be applied in a subsequent step for the fabrication of a pilot number of TEG modules/units.  相似文献   

16.
The thermoelectric behavior of the transition-metal disulfides n-type NiCr2S4 and p-type CuCrS2 has been investigated. Materials prepared by high-temperature reaction were consolidated using cold-pressing and sintering, hot-pressing in graphite dies or spark-plasma sintering in tungsten carbide dies. The consolidation conditions have a marked influence on the electrical transport properties. In addition to the effect on sample density, altering the consolidation conditions results in changes to the sample composition, including the formation of impurity phases. Maximum room-temperature power factors were 0.18 mW m?1 K?2 and 0.09 mW m?1 K?2 for NiCr2S4 and CuCrS2, respectively. Thermal conductivities of ca. 1.4 W m?1 K?1 and 1.2 W m?1 K?1 lead to figures of merit of 0.024 and 0.023 for NiCr2S4 and CuCrS2, respectively.  相似文献   

17.
By multifilling with La, Ba, Ga, Ti, Yb, Ca, Al, and In, the dimensionless figure of merit ZT of filled skutterudites has been improved in this work. ZT reached 0.75 for p-type (La,Ba,Ga,Ti) x (Fe,Co)4Sb12 (x = 0.8 to 1.0) and 1.0 for n-type (Yb,Ca,Al,Ga,In) y (Co,Fe)4Sb12 (y = 0.7 to 0.9). After annealing at 873 K for 180 h, 300 h, 710 h, 1000 h, and 5000 h in vacuum, the Seebeck coefficient S and the electrical resistivity ρ of the samples increased while the thermal conductivity λ decreased with increasing annealing time. As a result, the ZT values of both p- and n-type skutterudites remained unchanged or were slightly improved, demonstrating the excellent thermal stability of these skutterudites.  相似文献   

18.
19.
New, efficient thermoelectric materials (GeTe) x (Mn0.6Sn0.4Te)1−x (0.8 ≤ x ≤  1.0) were prepared by hot pressing, and the effect of MnTe and SnTe contents on thermoelectric and mechanical properties of GeTe was investigated. The maximum dimensionless figure of merit ZT of the prepared materials is 1.57 in the temperature range from 720 K to 770 K for x = 0.15. Niobium was added to the quasiternary GeTe-based materials to suppress creep without degradation of thermoelectric properties. The distortion of the material with added Nb was less than 0.4% under experimental conditions of 100 N load at 873 K for 100 h. The favorable thermoelectric properties of these materials are accompanied by their stability in long-term use and the possibility of widening the service temperature range as a result of decreasing their phase-transition temperature T c.  相似文献   

20.
We measured the thermoelectric (TE) properties of compressed pellets of various organic charge-transfer (CT) complexes, such as (TTF)(TCNQ), (BO)(TCNQ) and (ET)2(HCNAL), where TTF, TCNQ, BO, ET, and HCNAL represent tetrathiafulvalene, tetracyanoquinodimethane, bis(ethylenedioxy)-tetrathiafulvalene, bis(ethylenedithio)tetrathiafulvalene, and 2,5-dicyano- 3,6-dihydroxy-p-benzoquinone, respectively. The metallic (TTF)(TCNQ) and semiconducting (BO)(TCNQ) complexes showed Seebeck coefficients (S) of −18 μV/K and −30 μV/K at 300 K, respectively. On the contrary, the Mott insulator (ET)2(HCNAL) was found to show a rather high absolute S (−116 μV/K at 300 K), the magnitude of which is comparable to those of the conventional inorganic TE materials. With increasing temperature (170 K to 300 K), the electrical conductivity was increased about two orders of magnitude while the S value was nearly constant. These results suggest that S values could be determined mainly by spin entropy (configurations) of carriers in the Mott insulator (ET)2(HCNAL). The magnitude of the observed S value was compared with that derived from a theoretical model (generalized Heikes formula).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号