首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polymeric semiconductors have demonstrated great potential in the mass production of low‐cost, lightweight, flexible, and stretchable electronic devices, making them very attractive for commercial applications. Over the past three decades, remarkable progress has been made in donor–acceptor (D–A) polymer‐based field‐effect transistors, with their charge‐carrier mobility exceeding 10 cm2 V?1 s?1. Numerous molecular designs of D–A polymers have emerged and evolved along with progress in understanding the charge transport physics behind their high mobility. In this review, the current understanding of charge transport in polymeric semiconductors is covered along with significant features observed in high‐mobility D–A polymers, with a particular focus on polymeric microstructures. Subsequently, emerging molecular designs with further prospective improvements in charge‐carrier mobility are described. Moreover, the current issues and outlook for future generations of polymeric semiconductors are discussed.  相似文献   

2.
This study investigates the effect of the molecular structure of three different donor units, naphthalene (Np), bithiophene (BT), and thiophene–vinylene–thiophene (TVT), in isoindigo (IIG)‐based donor –acceptor conjugated polymers (PIIG‐Np, PIIG‐BT and PIIG‐TVT) on the charge carrier mobility of organic field‐effect transistors (OFETs). The charge transport properties of three different IIG‐based polymers strongly depend on donor units. PIIG–BT OFETs showed 50 times higher hole mobility (0.63 cm2 V?1 s?1) than PIIG–TVT and PIIG–Np ones of ≈ 0.01 cm2 V?1 s?1 with CYTOP dielectric though the BT units have less planarity than the TVT and Np units. The reasons for the different mobility in IIG‐based polymers are studied by analyzing the energy structure by absorption spectra, calculating transport levels by density functional theory, investigating the in‐ and out‐of‐plane crystallinity of thin film by grazing‐incidence wide‐angle X‐ray scattering, and extracting key transport parameters via low‐temperature measurements. By combining theoretical, optical, electrical, and structural analyses, this study finds that the large difference in OFET mobility mainly originates from the transport disorders determined by the different microcrystal structure, rather than the intrinsic transport properties in isolated chains for different polymers.  相似文献   

3.
Organic thin film transistors (OTFTs) of a series of twenty dipolar donor–acceptor‐substituted polymethine dyes (D–A dyes, dipole moments from 3–15 D) are investigated. The employed merocyanine dyes contain a dimethine bridge that is substituted with 1‐alkyl‐3,3‐dimethylindolin‐2‐ylidene (“Fischer base”), 3‐alkyl‐2,3‐dihydrobenzothiazol‐2‐ylidene or 1,3‐benzodithiole‐2‐ylidene, respectively, as electron‐donating unit and various acceptor heterocycles. These studies show that thin films formed by these D–A dyes upon deposition in high vacuum are all composed of antiparallel π‐stacked dimers. However, they are either amorphous, discontinuous or highly crystalline due to the interplay between molecule‐substrate and dimer–dimer interactions. With the help of single crystal X‐ray analysis, out‐of‐plane X‐ray studies (XRD), selected area electron diffraction (SAED), and atomic force microscopy (AFM), a correlation between the molecular structure, film ordering, and hole charge transport ability can be established. The mobility values are compared to Bässler's disorder charge transport theory and a film growth mechanism is proposed based on DFT calculations and single crystal structures. The results show that with carefully adjusted bulky substituents and high dipolarity an intimate centrosymmetric packing with a slipped, but tight π‐stacking arrangement could be realized. This provides two‐dimensional percolation pathways for holes and ultimately results in charge carrier mobilities up to 0.18 cm2 V?1 s?1.  相似文献   

4.
Field‐effect transistor memories usually require one additional charge storage layer between the gate contact and organic semiconductor channel. To avoid such complication, new donor–acceptor rod–coil diblock copolymers (P3HT44b‐Pison) of poly(3‐hexylthiophene) (P3HT)‐block‐poly(pendent isoindigo) (Piso) are designed, which exhibit high performance transistor memory characteristics without additional charge storage layer. The P3HT and Piso blocks are acted as the charge transporting and storage elements, respectively. The prepared P3HT44b‐Pison can be self‐assembled into fibrillar‐like nanostructures after the thermal annealing process, confirmed by atomic force microscopy and grazing‐incidence X‐ray diffraction. The lowest‐unoccupied molecular orbital levels of the studied polymers are significantly lowered as the block length of Piso increases, leading to a stronger electron affinity as well as charge storage capability. The field‐effect transistors (FETs) fabricated from P3HT44b‐Pison possess p‐type mobilities up to 4.56 × 10?2 cm2 V?1 s?1, similar to that of the regioregular P3HT. More interestingly, the FET memory devices fabricated from P3HT44b‐Pison exhibit a memory window ranging from 26 to 79 V by manipulating the block length of Piso, and showed stable long‐term data endurance. The results suggest that the FET characteristics and data storage capability can be effectively tuned simultaneously through donor/acceptor ratio and thin film morphology in the block copolymer system.  相似文献   

5.
Dual phototherapy, including photodynamic therapy (PDT) and photothermal therapy (PTT), is regarded as a more effective method for cancer treatment than single PDT or PTT. However, development of single component and near‐infrared (NIR) triggered agents for efficient dual phototherapy remains a challenge. Herein, a simple strategy to develop dual‐functional small‐molecules‐based photosensitizers for combined PDT and PTT treatment is proposed through: 1) finely modulating HOMO–LUMO energy levels to regulate the intersystem crossing (ISC) process for effective singlet oxygen (1O2) generation for PDT; 2) effectively inhibiting fluorescence via strong intramolecular charge transfer (ICT) to maximize the conversion of photo energy to heat for PTT or ISC process for PDT. An acceptor–donor–acceptor (A‐D‐A) structured small molecule (CPDT) is designed and synthesized. The biocompatible nanoparticles, FA‐CNPs, prepared by encapsulating CPDT directly with a folate functionalized amphipathic copolymer, present strong NIR absorption, robust photostability, cancer cell targeting, high photothermal conversion efficiency as well as efficient 1O2 generation under single 808 nm laser irradiation. Furthermore, synergistic PDT and PTT effects of FA‐CNPs in vivo are demonstrated by significant inhibition of tumor growth. The proposed strategy may provide a new approach to reasonably design and develop safe and efficient photosensitizers for dual phototherapy against cancer.  相似文献   

6.
Novel donor–acceptor rod–coil diblock copolymers of regioregular poly(3‐hexylthiophene) ( P3HT )‐block‐poly(2‐phenyl‐5‐(4‐vinylphenyl)‐1,3,4‐oxadiaz‐ole) ( POXD ) are successfully synthesized by the combination of a modified Grignard metathesis reaction ( GRIM ) and atom transfer radical polymerization ( ATRP ). The effects of the block ratios of the P3HT donor and POXD pendant acceptor blocks on the morphology, field effect transistor mobility, and memory device characteristics are explored. The TEM, SAXS, WAXS, and AFM results suggest that the coil block fraction significantly affects the chain packing of the P3HT block and depresses its crystallinity. The optical absorption spectra indicate that the intramolecular charge transfer between the main chain P3HT donor and the side chain POXD acceptor is relatively weak and the level of order of P3HT chains is reduced by the incorporation of the POXD acceptor. The field effect transistor (FET) hole mobility of the system exhibits a similar trend on the optical properties, which are also decreased with the reduced ordered P3HT crystallinity. The low‐lying highest occupied molecular orbital (HOMO) energy level (–6.08 eV) of POXD is employed as charge trap for the electrical switching memory devices. P3HT‐ b ‐POXD exhibits a non‐volatile bistable memory or insulator behavior depending on the P3HT / POXD block ratio and the resulting morphology. The ITO/ P3HT44b‐ POXD18 /Al memory device shows a non‐volatile switching characteristic with negative differential resistance (NDR) effect due to the charge trapped POXD block. These experimental results provide the new strategies for the design of donor‐acceptor rod‐coil block copolymers for controlling morphology and physical properties as well as advanced memory device applications.  相似文献   

7.
The photovoltaic performance and optoelectronic properties of a donor–acceptor copolymer are reported based on indacenodithienothiophene (IDTT) and 2,3‐bis(3‐(octyloxy)phenyl)quinoxaline moieties (PIDTTQ) as a function of the number‐average molecular weight (Mn). Current–voltage measurements and photoinduced charge carrier extraction by linear increasing voltage (photo‐CELIV) reveal improved charge generation and charge transport properties in these high band gap systems with increasing Mn, while polymers with low molecular weight suffer from diminished charge carrier extraction because of low mobility–lifetime (μτ) product. By combining Fourier‐transform photocurrent spectroscopy (FTPS) with electroluminscence spectroscopy, it is demonstrate that increasing Mn reduces the nonradiative recombination losses. Solar cells based on PIDTTQ with Mn = 58 kD feature a power conversion efficiency of 6.0% and a charge carrier mobility of 2.1 × 10?4 cm2 V?1 s?1 when doctor bladed in air, without the need for thermal treatment. This study exhibits the strong correlations between polymer fractionation and its optoelectronics characteristics, which informs the polymer design rules toward highly efficient organic solar cells.  相似文献   

8.
Charge transfer processes between donor–acceptor complexes and metallic electrodes are at the heart of novel organic optoelectronic devices such as solar cells. Here, a combined approach of surface‐sensitive microscopy, synchrotron radiation spectroscopy, and state‐of‐the‐art ab initio calculations is used to demonstrate the delicate balance that exists between intermolecular and molecule–substrate interactions, hybridization, and charge transfer in model donor–acceptor assemblies at metal‐organic interfaces. It is shown that charge transfer and chemical properties of interfaces based on single component layers cannot be naively extrapolated to binary donor–acceptor assemblies. In particular, studying the self‐assembly of supramolecular nanostructures on Cu(111), composed of fluorinated copper‐phthalocyanines (F16CuPc) and diindenoperylene (DIP), it is found that, in reference to the associated single component layers, the donor (DIP) decouples electronically from the metal surface, while the acceptor (F16CuPc) suffers strong hybridization with the substrate.  相似文献   

9.
Organic field‐effect transistors suffer from ultra‐high operating voltages in addition to their relative low mobility. A general approach to low‐operating‐voltage organic field‐effect transistors (OFETs) using donor/acceptor buffer layers is demonstrated. P‐type OFETs with acceptor molecule buffer layers show reduced operating voltages (from 60–100 V to 10–20 V), with mobility up to 0.19 cm2 V?1 s?1 and an on/off ratio of 3 × 106. The subthreshold slopes of the devices are greatly reduced from 5–12 V/decade to 1.68–3 V/decade. This favorable combination of properties means that such OFETs can be operated successfully at voltages below 20 V (|VDS| ≤ 20 V, |VGS| ≤ 20 V). This method also works for n‐type semiconductors. The reduced operating voltage and low pinch‐off voltage contribute to the improved ordering of the polycrystalline films, reduced grain boundary resistance, and steeper subthreshold slopes.  相似文献   

10.
High fill factors have only recently become commonplace in nonfullerene‐based organic solar cells, with the balance of charge carrier mobilities often cited as the contributing factor. Here an end‐group modification to a commonly used nonfullerene acceptor (O‐IDTBR) is reported, in which the rhodanine end groups are replaced with dicyano moieties, resulting in the acceptor O‐IDTBCN. This new acceptor affords significant improvement in the fill factor (73%) and photocurrent (19.8 mA cm?2) in organic solar cells with the low bandgap polymer PTB7‐Th. A narrowing of the bandgap, as a result of greater push–pull hybridization, allows complementary absorption to the donor and thus improved photon harvesting. Additionally, the measurement of charge carrier mobilities and lifetimes in both systems reveal that the PTB7‐Th:O‐IDTBCN blend possesses more balanced charge carrier mobilities, and longer lifetimes. Morphology studies reveal a slightly greater degree of molecular mixing of the O‐IDTBCN when blended with PTB7‐Th, despite the greater and more balanced charge carrier mobilities in this blend.  相似文献   

11.
A donor–acceptor (D–A) semiconducting copolymer, PDPP‐TVT‐29, comprising a diketopyrrolopyrrole (DPP) derivative with long, linear, space‐separated alkyl side‐chains and thiophene vinylene thiophene (TVT) for organic field‐effect transistors (OFETs) can form highly π‐conjugated structures with an edge‐on molecular orientation in an as‐spun film. In particular, the layer‐like conjugated film morphologies can be developed via short‐term thermal annealing above 150 °C for 10 min. The strong intermolecular interaction, originating from the fused DPP and D–A interaction, leads to the spontaneous self‐assembly of polymer chains within close proximity (with π‐overlap distance of 3.55 Å) and forms unexpectedly long‐range π‐conjugation, which is favorable for both intra‐ and intermolecular charge transport. Unlike intergranular nanorods in the as‐spun film, well‐conjugated layers in the 200 °C‐annealed film can yield more efficient charge‐transport pathways. The granular morphology of the as‐spun PDPP‐TVT‐29 film produces a field‐effect mobility (μ FET) of 1.39 cm2 V?1 s?1 in an OFET based on a polymer‐treated SiO2 dielectric, while the 27‐Å‐step layered morphology in the 200 °C‐annealed films shows high μ FET values of up to 3.7 cm2 V?1 s?1.  相似文献   

12.
Charge separation at the donor–acceptor interface is a key step for high efficiency in organic solar cells. If interfacial hybrid states exist already in the dark it is plausible that they can have a major impact on the dissociation of optically generated excitations. In this work we probe such interfacial states via steady state absorption spectroscopy. A substantial bleaching of the absorption spectrum is found near the absorption edge when an electron‐accepting layer of either trinitrofluorenone (TNF), C60, or a perylene‐diimide derivative is deposited on top of a layer of electron‐donating conjugated polymers, such as MEH‐PPV or various poly‐phenylene. This is in part attributed to the formation of ground state complexes with low oscillator strength. The experiments bear out a correlation between the reduction of the absorbance with the energy gap between the donor‐HOMO and acceptor‐LUMO, the effective conjugation length of the donor, and the efficiency of exciton dissociation in the solar cell. The effect originates from mixing of the donor‐HOMO and the acceptor LUMO. Calculations using density functional theory support this reasoning. Implications for efficiency of organic solar cells will be discussed.  相似文献   

13.
Carbon bridged (C‐PCPDTBT) and silicon‐bridged (Si‐PCPDTBT) dithiophene donor–acceptor copolymers belong to a promising class of low bandgap materials. Their higher field‐effect mobility, as high as 10?2 cm2 V?1 s?1 in pristine films, and their more balanced charge transport in blends with fullerenes make silicon‐bridged materials better candidates for use in photovoltaic devices. Striking morphological changes are observed in polymer:fullerene bulk heterojunctions upon the substitution of the bridging atom. XRD investigation indicates increased π–π stacking in Si‐PCPDTBT compared to the carbon‐bridged analogue. The fluorescence of this polymer and that of its counterpart C‐PCPDTBT indicates that the higher photogeneration achieved in Si‐PCPDTBT:fullerene films (with either [C60]PCBM or [C70]PCBM) can be correlated to the inactivation of a charge‐transfer complex and to a favorable length of the donor–acceptor phase separation. TEM studies of Si‐PCPDTBT:fullerene blended films suggest the formation of an interpenetrating network whose phase distribution is comparable to the one achieved in C‐PCPDTBT:fullerene using 1,8‐octanedithiol as an additive. In order to achieve a balanced hole and electron transport, Si‐PCPDTBT requires a lower fullerene content (between 50 to 60 wt%) than C‐PCPDTBT (more than 70 wt%). The Si‐PCPDTBT:[C70]PCBM OBHJ solar cells deliver power conversion efficiencies of over 5%.  相似文献   

14.
Interdependence of chemical structure, thin‐film morphology, and transport properties is a key, yet often elusive aspect characterizing the design and development of high‐mobility, solution‐processed polymers for large‐area and flexible electronics applications. There is a specific need to achieve >1 cm2 V?1 s?1 field‐effect mobilities (μ) at low processing temperatures in combination with environmental stability, especially in the case of electron‐transporting polymers, which are still lagging behind hole transporting materials. Here, the synthesis of a naphthalene‐diimide based donor–acceptor copolymer characterized by a selenophene vinylene selenophene donor moiety is reported. Optimized field‐effect transistors show maximum μ of 2.4 cm2 V?1 s?1 and promising ambient stability. A very marked film structural evolution is revealed with increasing annealing temperature, with evidence of a remarkable 3D crystallinity above 180 °C. Conversely, transport properties are found to be substantially optimized at 150 °C, with limited gain at higher temperature. This discrepancy is rationalized by the presence of a surface‐segregated prevalently edge‐on packed polymer phase, dominating the device accumulated channel. This study therefore serves the purpose of presenting a promising, high‐electron‐mobility copolymer that is processable at relatively low temperatures, and of clearly highlighting the necessity of specifically investigating channel morphology in assessing the structure–property nexus in semiconducting polymer thin films.  相似文献   

15.
Intramolecular donor–acceptor structures prepared by covalently binding conjugated octylphenanthrenyl‐imidazole moieties onto the side chains of regioregular poly(3‐hexylthiophene)s exhibit lowered bandgaps and enhanced electron transfer compared to the parent polymer, e.g., conjugation of 90 mol% octylphenanthrenyl‐imidazole moieties onto poly(3‐hexylthiophene) chains reduces the optical bandgap from 1.91 to 1.80 eV, and the electron transfer probability is at least twice as high as that of pure poly(3‐hexylthiophene) when blended with [6,6]‐phenyl‐C61‐butyric acid methyl ester. The lowered bandgap and the fast charge transfer both contribute to much higher external quantum efficiencies, thus much higher short‐circuit current densities for copolymers presenting octylphenanthrenyl‐imidazole moieties, relative to those of pure poly(3‐hexylthiophene)s. The short‐circuit current density of a device prepared from a copolymer presenting 90 mol% octylphenanthrenyl‐imidazole moieties is 13.7 mA · cm?2 which is an increase of 65% compared to the 8.3 mA · cm?2 observable for a device containing pure poly(3‐hexylthiophene). The maximum power conversion efficiency of this particular copolymer is 3.45% which suggest that such copolymers are promising polymeric photovoltaic materials.  相似文献   

16.
π‐conjugated polymers based on the electron‐neutral alkoxy‐functionalized thienyl‐vinylene (TVTOEt) building‐block co‐polymerized, with either BDT (benzodithiophene) or T2 (dithiophene) donor blocks, or NDI (naphthalenediimide) as an acceptor block, are synthesized and characterized. The effect of BDT and NDI substituents (alkyl vs alkoxy or linear vs branched) on the polymer performance in organic thin film transistors (OTFTs) and all‐polymer organic photovoltaic (OPV) cells is reported. Co‐monomer selection and backbone functionalization substantially modifies the polymer MO energies, thin film morphology, and charge transport properties, as indicated by electrochemistry, optical spectroscopy, X‐ray diffraction, AFM, DFT calculations, and TFT response. When polymer P7 is used as an OPV acceptor with PTB7 as a donor, the corresponding blend yields TFTs with ambipolar mobilities of μe = 5.1 × 10?3 cm2 V–1 s–1 and μh = 3.9 × 10?3 cm2 V–1 s–1 in ambient, among the highest mobilities reported to date for all‐polymer bulk heterojunction TFTs, and all‐polymer solar cells with a power conversion efficiency (PCE) of 1.70%, the highest reported PCE to date for an NDI‐polymer acceptor system. The stable transport characteristics in ambient and promising solar cell performance make NDI‐type materials promising acceptors for all‐polymer solar cell applications.  相似文献   

17.
The crystal structures of the charge‐transfer (CT) cocrystals formed by the π‐electron acceptor 1,3,4,5,7,8‐hexafluoro‐11,11,12,12‐tetracyanonaphtho‐2,6‐quinodimethane (F6TNAP) with the planar π‐electron‐donor molecules triphenylene (TP), benzo[b]benzo[4,5]thieno[2,3‐d]thiophene (BTBT), benzo[1,2‐b:4,5‐b′]dithiophene (BDT), pyrene (PY), anthracene (ANT), and carbazole (CBZ) have been determined using single‐crystal X‐ray diffraction (SCXRD), along with those of two polymorphs of F6TNAP. All six cocrystals exhibit 1:1 donor/acceptor stoichiometry and adopt mixed‐stacking motifs. Cocrystals based on BTBT and CBZ π‐electron donor molecules exhibit brickwork packing, while the other four CT cocrystals show herringbone‐type crystal packing. Infrared spectroscopy, molecular geometries determined by SCXRD, and electronic structure calculations indicate that the extent of ground‐state CT in each cocrystal is small. Density functional theory calculations predict large conduction bandwidths and, consequently, low effective masses for electrons for all six CT cocrystals, while the TP‐, BDT‐, and PY‐based cocrystals are also predicted to have large valence bandwidths and low effective masses for holes. Charge‐carrier mobility values are obtained from space‐charge limited current (SCLC) measurements and field‐effect transistor measurements, with values exceeding 1 cm2 V?1 s1 being estimated from SCLC measurements for BTBT:F6TNAP and CBZ:F6TNAP cocrystals.  相似文献   

18.
While it has been argued that field‐dependent geminate pair recombination (GR) is important, this process is often disregarded when analyzing the recombination kinetics in bulk heterojunction organic solar cells (OSCs). To differentiate between the contributions of GR and nongeminate recombination (NGR) the authors study bilayer OSCs using either a PCDTBT‐type polymer layer with a thickness from 14 to 66 nm or a 60 nm thick p‐DTS(FBTTh2)2 layer as donor material and C60 as acceptor. The authors measure JV‐characteristics as a function of intensity and charge‐extraction‐by‐linearly‐increasing‐voltage‐type hole mobilities. The experiments have been complemented by Monte Carlo simulations. The authors find that fill factor (FF) decreases with increasing donor layer thickness (Lp) even at the lowest light intensities where geminate recombination dominates. The authors interpret this in terms of thickness dependent back diffusion of holes toward their siblings at the donor–acceptor interface that are already beyond the Langevin capture sphere rather than to charge accumulation at the donor–acceptor interface. This effect is absent in the p‐DTS(FBTTh2)2 diode in which the hole mobility is by two orders of magnitude higher. At higher light intensities, NGR occurs as evidenced by the evolution of s‐shape of the JV‐curves and the concomitant additional decrease of the FF with increasing layer thickness.  相似文献   

19.
Organic light‐emitting diodes based on intramolecular‐charge‐transfer emission from two related donor–acceptor (D–A) molecules, 3,7‐[bis(4‐phenyl‐2‐quinolyl)]‐10‐methylphenothiazine (BPQ‐MPT) and 3,6‐[bis(4‐phenyl‐2‐quinolyl)]‐9‐methylcarbazole (BPQ‐MCZ), were found to have electroluminescence (EL) efficiencies and device brightnesses that differ by orders of magnitude. High brightness (> 40 000 cd m–2) and high efficiency (21.9 cd A–1, 10.8 lm W–1, 5.78 % external quantum efficiency (EQE) at 1140 cd m–2) green EL was achieved from the BPQ‐MPT emitter, which has its highest occupied molecular orbital (HOMO) level at 5.09 eV and a nonplanar geometry. In contrast, diodes with much lower brightness (2290 cd m–2) and efficiency (1.4 cd A–1, 0.66 lm W–1, 1.7 % EQE at 405 cd m–2) were obtained from the BPQ‐MCZ emitter, which has its HOMO level at 5.75 eV and exhibits a planar geometry. Compared to BPQ‐MCZ, the higher‐lying HOMO level of BPQ‐MPT facilitates more efficient hole injection/transport and a higher charge‐recombination rate, while its nonplanar geometry ensures diode color purity. White EL was observed from BPQ‐MCZ diodes owing to a blue intramolecular charge‐transfer emission and a yellow–orange intermolecular excimer emission, enabled by the planar molecular geometry. These results demonstrate that high‐performance light‐emitting devices can be achieved from intramolecular charge‐transfer emission, while highlighting the critical roles of the electron‐donor strength and the molecular geometry of D–A molecules.  相似文献   

20.
Conjugated polymer semiconductors P1 and P2 with bithienopyrroledione (bi‐TPD) as acceptor unit are synthesized. Their transistor and photovoltaic performances are investigated. Both polymers display high and balanced ambipolar transport behaviors in thin‐film transistors. P1‐ based devices show an electron mobility of 1.02 cm2 V?1 s?1 and a hole mobility of 0.33 cm2 V?1 s?1, one of the highest performance reported for ambipolar polymer transistors. The electron and hole mobilities of P2 transistors are 0.36 and 0.16 cm2 V?1 s?1, respectively. The solar cells with PC71BM as the electron acceptor and P1/P2 as the donor exhibit a high V oc about 1.0 V, and a power conversion efficiency of 6.46% is observed for P1‐ based devices without any additives and/or post treatment. The high performance of P1 and P2 is attributed to their crystalline films and short π–π stacking distance (<3.5 Å). These results demonstrate (1) bi‐TPD is an excellent versatile electron‐deficient unit for polymer semiconductors and (2) bi‐TPD‐based polymer semiconductors have potential applications in organic transistors and organic solar cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号