首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Spinel‐type NiCo2O4 (NCO) and NiCo2S4 (NCS) polyhedron architectures with sizes of 500–600 nm and rich mesopores with diameters of 1–2 nm are prepared facilely by the molecular design of Ni and Co into polyhedron‐shaped zeolitic imidazolate frameworks as solid precursors. Both as‐prepared NCO and NCS nanostructures exhibit excellent pseudocapacitance and stability as electrodes in supercapacitors. In particular, the exchange of O2? in the lattice of NCO with S2? obviously improves the electrochemical performance. NCS shows a highly attractive capacitance of 1296 F g?1 at a current density of 1 A g?1, ultrahigh rate capability with 93.2% capacitance retention at 10 A g?1, and excellent cycling stability with a capacitance retention of 94.5% after cycling at 1 A g?1 for 6000 times. The asymmetric supercapacitor with an NCS negative electrode and an active carbon positive electrode delivers a very attractive energy density of 44.8 Wh kg?1 at power density 794.5 W kg?1, and a favorable energy density of 37.7 Wh kg?1 is still achieved at a high power density of 7981.1 W kg?1. The specific mesoporous polyhedron architecture contributes significantly to the outstanding electrochemical performances of both NCO and NCS for capacitive energy storage.  相似文献   

2.
The demand for a new generation of flexible, portable, and high‐capacity power sources increases rapidly with the development of advanced wearable electronic devices. Here we report a simple process for large‐scale fabrication of self‐standing composite film electrodes composed of NiCo2O4@carbon nanotube (CNT) for supercapacitors. Among all composite electrodes prepared, the one fired in air displays the best electrochemical behavior, achieving a specific capacitance of 1,590 F g?1 at 0.5 A g?1 while maintaining excellent stability. The NiCo2O4@CNT/CNT film electrodes are fabricated via stacking NiCo2O4@CNT and CNT alternately through vacuum filtration. Lightweight, flexible, and self‐standing film electrodes (≈24.3 µm thick) exhibit high volumetric capacitance of 873 F cm?3 (with an areal mass of 2.5 mg cm?2) at 0.5 A g?1. An all‐solid‐state asymmetric supercapacitor consists of a composite film electrode and a treated carbon cloth electrode has not only high energy density (≈27.6 Wh kg?1) at 0.55 kW kg?1 (including the weight of the two electrodes) but also excellent cycling stability (retaining ≈95% of the initial capacitance after 5000 cycles), demonstrating the potential for practical application in wearable devices.  相似文献   

3.
A facile two‐step method is developed for large‐scale growth of ultrathin mesoporous nickel cobaltite (NiCo2O4) nanosheets on conductive nickel foam with robust adhesion as a high‐performance electrode for electrochemical capacitors. The synthesis involves the co‐electrodeposition of a bimetallic (Ni, Co) hydroxide precursor on a Ni foam support and subsequent thermal transformation to spinel mesoporous NiCo2O4. The as‐prepared ultrathin NiCo2O4 nanosheets with the thickness of a few nanometers possess many interparticle mesopores with a size range from 2 to 5 nm. The nickel foam supported ultrathin mesoporous NiCo2O4 nanosheets promise fast electron and ion transport, large electroactive surface area, and excellent structural stability. As a result, superior pseudocapacitive performance is achieved with an ultrahigh specific capacitance of 1450 F g?1, even at a very high current density of 20 A g?1, and excellent cycling performance at high rates, suggesting its promising application as an efficient electrode for electrochemical capacitors.  相似文献   

4.
Transition metal oxides are promising electrode candidates for supercapacitor because of their low cost, high theoretical capacity, and good reversibility. However, intrinsically poor electrical conductivity and sluggish reaction kinetics of these oxides normally lead to low specific capacity and slow rate capability of the devices. Herein, a commonly used cobalt oxide is used as an example to demonstrate that lithiation process as a new strategy to enhance its electrochemical performance for supercapacitor application. Detailed characterization reveals that electrochemical lithiation of Co3O4 crystal reduces the coordination of the Co? O band, leading to substantially increased oxygen vacancies (octahedral Co2+ sites). These vacancies further trigger the formation of a new electronic state in the bandgap, resulting in remarkably improved electrical conductivity and accelerated faradic reactions. The lithiated Co3O4 exhibits a noticeably enhanced specific capacity of 260 mAh g?1 at 1 A g?1, approximately fourfold enhancement compared to that of pristine Co3O4 (66 mAh g?1). The hybrid supercapacitor assembled with lithiated Co3O4//N‐doped activated carbon achieves high energy densities in a broad range of power densities, e.g., 76.7 Wh kg?1 at 0.29 kW kg?1, 46.9 Wh kg?1 at a high power density of 18.7 kW kg?1, outperforming most of the reported hybrid supercapacitors.  相似文献   

5.
The rational design of advanced structures consisting of multiple components with excellent electrochemical capacitive properties is one of the crucial hindrances to be overcome for high‐performance supercapacitors (SCs). Herein, a superfast and facile synthesis of flower‐like NiMn‐layered double hydroxides (NiMn‐LDH) with high SC performance using an electrodeposition process on nickel foam is proposed. Oxygen vacancies are then modulated via mild H2O2 treatment for the first time, significantly promoting the electrochemical energy storage performance. The oxygen‐vacancy abundant NiMn‐LDH (Ov‐LDH) reaches a maximum specific capacity of 1183 C g?1 at the current density of 1 A g?1 and retains a high capacity retention of 835 C g?1 even at a current density of up to 10 A g?1. Furthermore, the assembled asymmetric SC device achieves a high specific energy density of 46.7 Wh kg?1 at a power density of 1.7 kW kg?1. Oxygen vacancies are proven to play a vital role in the improvement of electrochemistry performance of LDH based on experimental and theoretical studies. This vacancy engineering strategy provides a new insight into SC active materials and should be beneficial for the design of the next generation of energy storage devices.  相似文献   

6.
2D MXenes have been widely applied in the field of electrochemical energy storage owning to their high electrical conductivity and large redox‐active surface area. However, electrodes made from multilayered MXene with small interlayer spacing exhibit sluggish kinetics with low capacity for sodium‐ion storage. Herein, Ti3C2 MXene with expanded and engineered interlayer spacing for excellent storage capability is demonstrated. After cetyltrimethylammonium bromide pretreatment, S atoms are successfully intercalated into the interlayer of Ti3C2 to form a desirable interlayer‐expanded structure via Ti? S bonding, while pristine Ti3C2 is hardly to be intercalated. When the annealing temperature is 450 °C, the S atoms intercalated Ti3C2 (CT‐S@Ti3C2‐450) electrode delivers the improved Na‐ion capacity of 550 mAh g?1 at 0.1 A g?1 (≈120 mAh g?1 at 15 A g?1, the best MXene‐based Na+‐storage rate performance reported so far), and excellent cycling stability over 5000 cycles at 10 A g?1 by enhanced pseudocapacitance. The enhanced sodium‐ion storage capability has also been verified by theoretical calculations and kinetic analysis. Coupling the CT‐S@Ti3C2‐450 anode with commercial AC cathode, the assembled Na+ capacitor delivers high energy density (263.2 Wh kg?1) under high power density (8240 W kg?1), and outstanding cycling performance.  相似文献   

7.
Highly conductive metal selenides are gaining prominence as promising electrode materials in electrochemical energy‐storage fields. However, phase‐pure bimetallic selenides are scarcely retrieved, and their underlying charge‐storage mechanisms are still far from clear. Here, first a solvothermal strategy is devised to purposefully fabricate monodisperse hollow NiCoSe2 (H‐NiCoSe2) sub‐microspheres. Inherent formation of metallic H‐NiCoSe2 is tentatively put forward with comparative structure‐evolution investigations. Interestingly, the fresh H‐NiCoSe2 does not demonstrate striking supercapacitive behaviors when evaluated for electrochemical supercapacitors (ESs). But it exhibits competitive pseudocapacitance of ≈750 F g?1 at a rate of 3 A g?1 with a high loading of 7 mg cm?2 after ≈100 cyclic voltammetry (CV) cycles. With systematic physicochemical/electrochemical analyses, intrinsic energy‐storage mechanism of the H‐NiCoSe2 is convincingly revealed that the electrooxidation‐generated biactive CoOOH/NiOOH phases in aqueous KOH over CV scanning, rather than the H‐NiCoSe2 itself, account for the remarkable pesudocapacitance observed after cycling. An assembled H‐NiCoSe2‐based asymmetric device has delivered an energy density of ≈25.5 Wh kg?1 with a power rate of ≈3.75 kW kg?1, and long‐span cycle life. More significantly, the electrode design and new perspectives here hold profound promise in enriching material synthesis methodologies and in‐depth understanding of the complex charge‐storage process of newly emerging pseudocapacitive materials for next‐generation ESs.  相似文献   

8.
Hybrid metal–organic frameworks (MOFs) demonstrate great promise as ideal electrode materials for energy‐related applications. Herein, a well‐organized interleaved composite of graphene‐like nanosheets embedded with MnO2 nanoparticles (MnO2@C‐NS) using a manganese‐based MOF and employed as a promising anode material for Li‐ion hybrid capacitor (LIHC) is engineered. This unique hybrid architecture shows intriguing electrochemical properties including high reversible specific capacity 1054 mAh g?1 (close to the theoretical capacity of MnO2, 1232 mAh g?1) at 0.1 A g?1 with remarkable rate capability and cyclic stability (90% over 1000 cycles). Such a remarkable performance may be assigned to the hierarchical porous ultrathin carbon nanosheets and tightly attached MnO2 nanoparticles, which provide structural stability and low contact resistance during repetitive lithiation/delithiation processes. Moreover, a novel LIHC is assembled using a MnO2@C‐NS anode and MOF derived ultrathin nanoporous carbon nanosheets (derived from other potassium‐based MOFs) cathode materials. The LIHC full‐cell delivers an ultrahigh specific energy of 166 Wh kg?1 at 550 W kg?1 and maintained to 49.2 Wh kg?1 even at high specific power of 3.5 kW kg?1 as well as long cycling stability (91% over 5000 cycles). This work opens new opportunities for designing advanced MOF derived electrodes for next‐generation energy storage devices.  相似文献   

9.
What has been a crucial demand is that designing mighty cathode materials for aqueous zinc−ion batteries (AZIBs), which are vigorous alternative devices for large−scale energy storage by means of their high safety and low cost. Herein, a facile strategy is designed that combines oxygen defect engineering with polymer coating in a synergistic action. As an example, the oxygen−deficient hydrate vanadium dioxide with polypyrrole coating (Od−HVO@PPy) is synthesized via a one-step hydrothermal method in which introducing oxygen vacancy in HVO is simultaneously realized during the in situ polymerization. Such a desirable material adjusts the surface adsorption and internal diffusion of Zn2+ demonstrated by electrochemical characterization and theoretical calculation results. Moreover, it also utilizes conductive polymer coating to improve electrical conductivity and suppress cathode dissolution. Therefore, the Od−HVO@PPy electrode delivers a preferable reversible capacity (337 mAh g−1 at 0.2 A g−1) with an impressive energy density of 228 Wh kg−1 and stable long cycle life. This enlightened design opens up a new modus operandi toward superior cathode materials for advanced AZIBs.  相似文献   

10.
The introduction of oxygen vacancy for transition metal oxide is an effective method to tune their conductivity. Here, microwave combustion method is used to quickly synthesize reduced metal oxides and graphene hybrid composite in several minutes. Among these as‐synthesized composites, the reduced orthorhombic Nb2O5 and graphene oxide (rNb2O5/rGO) composite demonstrates great electrochemical performance with a reversible specific capacity of 726.2 C g?1 at 2 mV s?1 in organic electrolyte as well as a good capacity retention of 87% after 3000 cycles at 10 A g?1. It is believed that this strategy can be a common route to quickly produce oxygen vacancy in oxides and satisfy much more application requirements even for the possibility of industrialization.  相似文献   

11.
Nanocomposites of interpenetrating carbon nanotubes and vanadium pentoxide (V2O5) nanowires networks are synthesized via a simple in situ hydrothermal process. These fibrous nanocomposites are hierarchically porous with high surface area and good electric conductivity, which makes them excellent material candidates for supercapacitors with high energy density and power density. Nanocomposites with a capacitance up to 440 and 200 F g?1 are achieved at current densities of 0.25 and 10 A g?1, respectively. Asymmetric devices based on these nanocomposites and aqueous electrolyte exhibit an excellent charge/discharge capability, and high energy densities of 16 W h kg?1 at a power density of 75 W kg?1 and 5.5 W h kg?1 at a high power density of 3 750 W kg?1. This performance is a significant improvement over current electrochemical capacitors and is highly competetive with Ni–MH batteries. This work provides a new platform for high‐density electrical‐energy storage for electric vehicles and other applications.  相似文献   

12.
Layered transition metal oxides (TMOs) are appealing cathode candidates for sodium‐ion batteries (SIBs) by virtue of their facile 2D Na+ diffusion paths and high theoretical capacities but suffer from poor cycling stability. Herein, taking P2‐type Na2/3Ni1/3Mn2/3O2 as an example, it is demonstrated that the hierarchical engineering of porous nanofibers assembled by nanoparticles can effectively boost the reaction kinetics and stabilize the structure. The P2‐Na2/3Ni1/3Mn2/3O2 nanofibers exhibit exceptional rate capability (166.7 mA h g?1 at 0.1 C with 73.4 mA h g?1 at 20 C) and significantly improved cycle life (≈81% capacity retention after 500 cycles) as cathode materials for SIBs. The highly reversible structure evolution and Ni/Mn valence change during sodium insertion/extraction are verified by in operando X‐ray diffraction and ex situ X‐ray photoelectron spectroscopy, respectively. The facilitated electrode process kinetics are demonstrated by an additional study using the electrochemical measurements and density functional theory computations. More impressively, the prototype Na‐ion full battery built with a Na2/3Ni1/3Mn2/3O2 nanofibers cathode and hard carbon anode delivers a promising energy density of 212.5 Wh kg?1. The concept of designing a fibrous framework composed of small nanograins offers a new and generally applicable strategy for enhancing the Na‐storage performance of layered TMO cathode materials.  相似文献   

13.
Manganese‐based metal oxide electrode materials are of great importance in electrochemical energy storage for their favorable redox behavior, low cost, and environmental friendliness. However, their storage capacity and cycle life in aqueous Na‐ion electrolytes is not satisfactory. Herein, the development of a biphase cobalt–manganese oxide (Co? Mn? O) nanostructured electrode material is reported, comprised of a layered MnO2?H2O birnessite phase and a (Co0.83Mn0.13Va0.04)tetra(Co0.38Mn1.62)octaO3.72 (Va: vacancy; tetra: tetrahedral sites; octa: octahedral sites) spinel phase, verified by neutron total scattering and pair distribution function analyses. The biphase Co? Mn? O material demonstrates an excellent storage capacity toward Na‐ions in an aqueous electrolyte (121 mA h g?1 at a scan rate of 1 mV s?1 in the half‐cell and 81 mA h g?1 at a current density of 2 A g?1 after 5000 cycles in full‐cells), as well as high rate performance (57 mA h g?1 a rate of 360 C). Electrokinetic analysis and in situ X‐ray diffraction measurements further confirm that the synergistic interaction between the spinel and layered phases, as well as the vacancy of the tetrahedral sites of spinel phase, contribute to the improved capacity and rate performance of the Co? Mn? O material by facilitating both diffusion‐limited redox and capacitive charge storage processes.  相似文献   

14.
Binary metal oxides has been regarded as a promising class of electrode materials for high‐performance energy storage devices since it offers higher electrochemical activity and higher capacity than mono‐metal oxide. Besides, rational design of electrode architectures is an effective solution to further enhance electrochemical performance of energy storage devices. Here, the advanced electrode architectures consisting of carbon textiles uniformally covered by mesoporous NiCo2O4 nanowire arrays (NWAs) are successfully fabricated by a simple surfactant‐assisted hydrothermal method combined with a short post annealing treatment, which can be directly applied as self‐supported electrodes for energy storage devices, such as Li‐ion batteries, supercapacitors. The as‐prepared mesoporous NiCo2O4 nanowires consist of numerous highly crystalline nanoparticles, leaving a large number of mesopores to alleviate the volume change during the charge/discharge process. Electrode architectures presented here promise fast electron transport by direct connection to the growth substrate and facile ion diffusion path provided by both the abundant mesoporous structure in nanowires and large open spaces between neighboring nanowires, which ensures every nanowire participates in the ultrafast electrochemical reaction. Benefiting from the intrinsic materials and architectures features, the unique binder‐free NiCo2O4/carbon textiles exhibit high specific capacity/capacitance, excellent rate capability, and cycling stability.  相似文献   

15.
Layered double hydroxides (LDHs) are promising supercapacitor electrode materials due to their high specific capacitances. However, their electrochemical performances such as rate performance and energy density at a high current density, are rather poor. Accordingly, a facile strategy is demonstrated for the synthesis of the integrated porous Co–Al hydroxide nanosheets (named as GSP‐LDH) with dual support system using dodecyl sulfate anions and graphene sheets as structural and conductive supports, respectively. Owing to fast ion/electron transport, porous and integrated structure, the GSP‐LDH electrode exhibits remarkably improved electrochemical characteristics such as high specific capacitance (1043 F g?1 at 1 A g?1) and ultra‐high rate performance capability (912 F g?1 at 20 A g?1). Moreover, the assembled sandwiched graphene/porous carbon (SGC)//GSP‐LDH asymmetric supercapacitor delivers a high energy density up to 20.4 Wh kg?1 at a very high power density of 9.3 kW kg?1, higher than those of previously reported asymmetric supercapacitors. The strategy provides a facile and effective method to achieve high rate performance LDH based electrode materials for supercapacitors.  相似文献   

16.
High performance of electrochemical energy storage devices depends on the smart structure engineering of electrodes, including the tailored nanoarchitectures of current collectors and subtle hybridization of active materials. To improve the anode supercapacitive performance of Fe2O3 for high‐voltage asymmetric supercapacitors, here, a hybrid core‐branch nanoarchitecture is proposed by integrating Fe2O3 nanoneedles on ultrafine Ni nanotube arrays (NiNTAs@Fe2O3 nanoneedles). The fabrication process employs a bottom‐up strategy via a modified template‐assisted method starting from ultrafine ZnO nanorod arrays, ensuring the formation of ultrafine Ni nanotube arrays with ultrathin tube walls. The novel developed NiNTAs@Fe2O3 nanoneedle electrode is demonstrated to be a highly capacitive anode (418.7 F g?1 at 10 mV s?1), matching well with the similarly built NiNTAs@MnO2 nanosheet cathode. Contributed by the efficient electron collection paths and short ion diffusion paths in the uniquely designed anode and cathode, the asymmetric supercapacitors exhibit an excellent maximum energy density of 34.1 Wh kg?1 at the power density of 3197.7 W kg?1 in aqueous electrolyte and 32.2 Wh kg?1 at the power density of 3199.5 W kg?1 in quasi‐solid‐state gel electrolyte.  相似文献   

17.
Transition metal oxides, possessing high theoretical specific capacities, are promising anode materials for sodium‐ion batteries. However, the sluggish sodiation/desodiation kinetics and poor structural stability restrict their electrochemical performance. To achieve high and fast Na storage capability, in this work, rambutan‐like hybrid hollow spheres of carbon confined Co3O4 nanoparticles are synthesized by a facile one‐pot hydrothermal treatment with postannealing. The hierarchy hollow structure with ultrafine Co3O4 nanoparticles embedded in the continuous carbon matrix enables greatly enhanced structural stability and fast electrode kinetics. When tested in sodium‐ion batteries, the hollow structured composite electrode exhibits an outstandingly high reversible specific capacity of 712 mAh g?1 at a current density of 0.1 A g?1, and retains a capacity of 223 mAh g?1 even at a large current density of 5 A g?1. Besides the superior Na storage capability, good cycle performance is demonstrated for the composite electrode with 74.5% capacity retention after 500 cycles, suggesting promising application in advanced sodium‐ion batteries.  相似文献   

18.
3D printing graphene aerogel with periodic microlattices has great prospects for various practical applications due to their low density, large surface area, high porosity, excellent electrical conductivity, good elasticity, and designed lattice structures. However, the low specific capacitance limits their development in energy storage fields due to the stacking of graphene. Therefore, constructing a graphene‐based 2D materials hybridization aerogel that consists of the pseduocapacitive substance and graphene material is necessary for enhancing electrochemical performance. Herein, 3D printing periodic graphene‐based composite hybrid aerogel microlattices (HAMs) are reported via 3D printing direct ink writing technology. The rich porous structure, high electrical conductivity, and highly interconnected networks of the HAMs aid electron and ion transport, further enabling excellent capacitive performance for supercapacitors. An asymmetric supercapacitor device is assembled by two different 4‐mm‐thick electrodes, which can yield high gravimetric specific capacitance (Cg) of 149.71 F g?1 at a current density of 0.5 A g?1 and gravimetric energy density (Eg) of 52.64 Wh kg?1, and retains a capacitance retention of 95.5% after 10 000 cycles. This work provides a general strategy for designing the graphene‐based mixed‐dimensional hybrid architectures, which can be utilized in energy storage fields.  相似文献   

19.
Flexible energy storage devices are critical components for emerging flexible and wearable electronics. Improving the electrochemical performance of flexible energy storage devices depends largely on development of novel electrode architectures and new systems. Here, a new class of flexible energy storage device called flexible sodium‐ion pseudocapacitors is developed based on 3D‐flexible Na2Ti3O7 nanosheet arrays/carbon textiles (NTO/CT) as anode and flexible reduced graphene oxide film (GFs) as cathode without metal current collectors or conducting additives. The NTO/CT anode with advanced electrode architectures is fabricated by directly growing Na2Ti3O7 nanosheet arrays on carbon textiles with robust adhesion through a simple hydrothermal process. The flexible GF//NTO/CT configuration achieves a high energy density of 55 Wh kg?1 and high power density of 3000 W kg?1. Taking the fully packaged flexible sodium‐ion pseudocapacitors into consideration, the maximum practical volumetric energy density and power density reach up to 1.3 mWh cm?3 and 70 mW cm?3, respectively. In addition, the flexible GF//NTO/CT device demonstrates a stable electrochemical performances with almost 100% capacitance retention under harsh mechanical deformation.  相似文献   

20.
Rechargeable aqueous zinc batteries have gained considerable attention for large‐scale energy storage systems because of their low cost and high safety, but they suffer from limitations in cycling stability and energy density with advanced cathode materials. Here, a high‐performance V5O12·6H2O (VOH) nanobelt cathode uniformly located on a stainless‐steel substrate via a facile electrodeposition technique is reported. We show that the hydrated layered VOH cathode enables highly reversible and ultrafast Zn2+ cation (de)intercalation processes, as confirmed by various electrochemical, X‐ray diffraction, X‐ray photoelectron spectroscopy, and transmission electron microscopy analyses. It is demonstrated that the binder‐free VOH cathode can deliver a discharge capacity of 354.8 mAh g?1 at 0.5 A g?1 with a high initial Coulombic efficiency of 99.5%, a high energy density of 194 Wh kg?1 at 2100 W kg?1, and a long cycle life with a capacity retention of 94% over 1000 cycles. In addition, a flexible quasi‐solid‐state Zn–VOH battery is constructed, achieving a reversible capacity of ≈300 mAh g?1 with a capacity retention of 96% after 50 cycles and displaying excellent electrochemical behaviors under different bending states. This work sheds light on the development of rechargeable aqueous zinc batteries for stationary grid storage applications or flexible energy storage devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号