首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Two fluorescent molecules with an alkynylanthracene core and pyrene end‐cappers have been synthesized and fully characterized. Carbazole moieties are introduced into one molecule at the C9 position of the fluorene linkages to enhance the hole‐transport ability of the molecule and to reduce intermolecular interactions. Both compounds exhibit high thermal stabilities and narrow energy bandgaps. Single‐layer polymer light‐emitting diodes (PLEDs) based on poly(9,9‐dioctylfluorene) (PFO) doped with the synthesized compounds exhibit excellent performance. A PLED with 0.2 % of dopant 7 had a high luminance efficiency of 10.7 ± 0.3 cd A–1 as well as a brightness of 1400 cd m–2 at a current density of 13 mA cm–2, and a low turn on voltage (3.1 V) at a brightness of 10 cd m–2. A maximum brightness of 20 500 ± 1400 cd m–2 at 7 V was also measured. The high efficiency of the device's performance is attributed to the good electron and hole trapping ability of the dopants, which possess suitable energy levels as compared to those of PFO.  相似文献   

2.
Charge carrier injection and transport in polymer light‐emitting diodes (PLEDs) is strongly limited by the energy level offset at organic/(in)organic interfaces and the mismatch in electron and hole mobilities. Herein, these limitations are overcome via electrochemical doping of a light‐emitting polymer. Less than 1 wt% of doping agent is enough to effectively tune charge injection and balance and hence significantly improve PLED performance. For thick single‐layer (1.2 µm) PLEDs, dramatic reductions in current and luminance turn‐on voltages (VJ = 11.6 V from 20.0 V and VL = 12.7 V from 19.8 V with/without doping) accompanied by reduced efficiency roll‐off are observed. For thinner (<100 nm) PLEDs, electrochemical doping removes a thickness dependence on VJ and VL, enabling homogeneous electroluminescence emission in large‐area doped devices. Such efficient charge injection and balance properties achieved in doped PLEDs are attributed to a strong electrochemical interaction between the polymer and the doping agents, which is probed by in situ electric‐field‐dependent Raman spectroscopy combined with further electrical and energetic analysis. This approach to control charge injection and balance in solution‐processed PLEDs by low electrochemical doping provides a simple yet feasible strategy for developing high‐quality and efficient lighting applications that are fully compatible with printing technologies.  相似文献   

3.
A variety of N ‐hydrogenated/N ‐methylated pyridinium salts are elaborately designed and synthesized. Thermogravimetric and X‐ray photoelectron spectra analysis indicate the intensities of the N? H covalent bonds are strengthened step‐by‐step from 3,3′‐(5′‐(3‐(pyridin‐3‐yl)phenyl)‐[1,1′:3′,1″‐terphenyl]‐3,3″‐diyl)dipyridine (Tm)‐HCl to Tm‐HBr and then Tm‐TfOH, which results in gradually improved cathode interfacial modification abilities. The larger dipole moments of N+? H containing moieties compared to those of the N+? CH3 endow them with more preferable interfacial modification abilities. Electron paramagnetic resonance signals reveal the existence of radical anions in the solid state of Tm‐TfOH, which enables its self‐doping property and high electron mobility up to 1.67 × 10?3 cm2 V?1 s?1. Using the Tm‐TfOH as the cathode interfacial layers (CILs), the phenyl‐substituted poly(para ‐phenylene vinylene)‐based all‐solution‐processed polymer light‐emitting diodes (PLEDs) achieve more preferable device performances than the poly[(9,9‐bis(3′‐(N ,N ‐dimethylamino)propyl)‐2,7‐fluorene)‐alt ‐2,7‐(9,9‐dioctylfluorene)]‐based ones, i.e., high current density of nearly 300 mA cm?2, very high luminance over 15 000 cd m?2 at a low bias of 5 V. Remarkably, the thickness of the CILs has little impact on the device performance and high efficiencies are maintained even at thicknesses up to 85 nm, which is barely realized in PLEDs with small‐molecule‐based electron transporting layers.  相似文献   

4.
Graphene has been considered to be a potential alternative transparent and flexible electrode for replacing commercially available indium tin oxide (ITO) anode. However, the relatively high sheet resistance and low work function of graphene compared with ITO limit the application of graphene as an anode for organic or polymer light‐emitting diodes (OLEDs or PLEDs). Here, flexible PLEDs made by using bis(trifluoromethanesulfonyl)amide (TFSA, [CF3SO2]2NH) doped graphene anodes are demonstrated to have low sheet resistance and high work function. The graphene is easily doped with TFSA by means of a simple spin‐coating process. After TFSA doping, the sheet resistance of the TFSA‐doped five‐layer graphene, with optical transmittance of ≈88%, is as low as ≈90 Ω sq?1. The maximum current efficiency and power efficiency of the PLED fabricated on the TFSA‐doped graphene anode are 9.6 cd A?1 and 10.5 lm W?1, respectively; these values are markedly higher than those of the PLED fabricated on pristine graphene anode and comparable to those of an ITO anode.  相似文献   

5.
Light‐emitting diodes (LEDs) based on lead halide perovskites demonstrate outstanding optoelectronic properties and are strong competitors for display and lighting applications. While previous halide perovskite LEDs are mainly produced via solution processing, here an all‐vacuum processing method is employed to construct CsPbBr3 LEDs because vacuum processing exhibits high reliability and easy integration with existing OLED facilities for mass production. The high‐throughput combinatorial strategies are further adopted to study perovskite composition, annealing temperature, and functional layer thickness, thus significantly speeding up the optimization process. The best rigid device shows a current efficiency (CE) of 4.8 cd A?1 (EQE of 1.45%) at 2358 cd m?2, and best flexible device shows a CE of 4.16 cd A?1 (EQE of 1.37%) at 2012 cd m?2 with good bending tolerance. Moreover, by choosing NiOx as the hole‐injection layer, the CE is improved to 10.15 cd A?1 and EQE is improved to a record of 3.26% for perovskite LEDs produced by vacuum deposition. The time efficient combinatorial approaches can also be applied to optimize other perovskite LEDs.  相似文献   

6.
A series of amino N‐oxide functionalized polyfluorene homopolymers and copolymers (PNOs) are synthesized by oxidizing their amino functionalized precursor polymers (PNs) with hydrogen peroxide. Excellent solubility in polar solvents and good electron injection from high work‐function metals make PNOs good candidates for interfacial modification of solution processed multilayer polymer light‐emitting diodes (PLEDs) and polymer solar cells (PSCs). Both PNOs and PNs are used as cathode interlayers in PLEDs and PSCs. It is found that the resulting devices show much better performance than devices based on a bare Al cathode. The effect of side chain and main chain variations on the device performance is investigated. PNOs/Al cathode devices exhibit better performance than PNs/Al cathode devices. Moreover, devices incorporating polymers with para‐linkage of pyridinyl moieties exhibit better performance than those using polymers with meta‐linked counterparts. With a poly[(2,7‐(9,9‐bis(6‐(N,N‐diethylamino)‐hexyl N‐oxide)fluorene))‐alt‐(2,5‐pyridinyl)] (PF6NO25Py) cathode interlayer, the resulting device exhibits a luminance efficiency of 16.9 cd A?1 and a power conversion efficiency of 6.9% for PLEDs and PSCs, respectively. These results indicate that PNOs are promising new cathode interlayers for modifying a range of optoelectronic devices.  相似文献   

7.
The charge transport and recombination in white‐emitting polymer light‐ emitting diodes (PLEDs) are studied. The PLED investigated has a single emissive layer consisting of a copolymer in which a green and red dye are incorporated in a blue backbone. From single‐carrier devices the effect of the green‐ and red‐emitting dyes on the hole and electron transport is determined. The red dye acts as a deep electron trap thereby strongly reducing the electron transport. By incorporating trap‐assisted recombination for the red emission and bimolecular Langevin recombination for the blue emission, the current and light output of the white PLED can be consistently described. The color shift of single‐layer white‐emitting PLEDs can be explained by the different voltage dependencies of trap‐assisted and bimolecular recombination.  相似文献   

8.
A study of hybrid light‐emitting diodes (HyLEDs) fabricated with and without solution‐processible Cs2CO3 and Ba(OH)2 inorganic interlayers is presented. The interlayers are deposited between a zinc oxide electron‐injection layer and a fluorescent emissive polymer poly(9‐dioctyl fluorine–alt‐benzothiadiazole) (F8BT) layer, with a thermally evaporated MoO3/Au layer used as top anode contact. In comparison to Cs2CO3, the Ba(OH)2 interlayer shows improved charge carrier balance in bipolar devices and reduced exciton quenching in photoluminance studies at the ZnO/Ba(OH)2/F8BT interface compared to the Cs2CO3 interlayer. A luminance efficiency of ≈28 cd A?1 (external quantum efficiency (EQE) ≈ 9%) is achieved for ≈1.2 μm thick single F8BT layer based HyLEDs. Enhanced out‐coupling with the aid of a hemispherical lens allows further efficiency improvement by a factor of 1.7, increasing the luminance efficiency to ≈47cd A?1, corresponding to an EQE of 15%. The photovoltaic response of these structures is also studied to gain an insight into the effects of interfacial properties on the photoinduced charge generation and back‐recombination, which reveal that Ba(OH)2 acts as better hole blocking layer than the Cs2CO3 interlayer.  相似文献   

9.
A series of blue (B), green (G) and red (R) light‐emitting, 9,9‐bis(4‐(2‐ethyl‐hexyloxy)phenyl)fluorene (PPF) based polymers containing a dibenzothiophene‐S,S‐dioxide (SO) unit (PPF‐SO polymer), with an additional benzothiadiazole (BT) unit (PPF‐SO‐BT polymer) or a 4,7‐di(4‐hexylthien‐2‐yl)‐benzothiadiazole (DHTBT) unit (PPF‐SO‐DHTBT polymer) are synthesized. These polymers exhibit high fluorescence yields and good thermal stability. Light‐emitting diodes (LEDs) using PPF‐SO25, PPF‐SO15‐BT1, and PPF‐SO15‐DHTBT1 as emission polymers have maximum efficiencies LEmax = 7.0, 17.6 and 6.1 cd A?1 with CIE coordinates (0.15, 0.17), (0.37, 0.56) and (0.62, 0.36), respectively. 1D distributed feedback lasers using PPF‐SO30 as the gain medium are demonstrated, with a wavelength tuning range 467 to 487 nm and low pump energy thresholds (≥18 nJ). Blending different ratios of B (PPF‐SO), G (PPF‐SO‐BT) and R (PPF‐SO‐DHTBT) polymers allows highly efficient white polymer light‐emitting diodes (WPLEDs) to be realized. The optimized devices have an attractive color temperature close to 4700 K and an excellent color rendering index (CRI) ≥90. They are relatively stable, with the emission color remaining almost unchanged when the current densities increase from 20 to 260 mA cm?2. The use of these polymers enables WPLEDs with a superior trade‐off between device efficiency, CRI, and color stability.  相似文献   

10.
A new approach to forming a gradient hole‐injection layer in polymer light‐emitting diodes (PLEDs) is demonstrated. Single spin‐coating of hole‐injecting conducting polymer compositions with a perfluorinated ionomer results in a work function gradient through the layer formed by self‐organization, which leads to remarkably efficient single‐layer PLEDs (ca. 21 cd A–1). The device lifetime is significantly improved (ca. 50 times) compared with the conventional hole‐injection layer, poly(3,4‐ethylenedioxythiophene)/poly(styrene sulfonate). These results are a good example for demonstrating that the shorter lifetime of PLEDs compared with small‐molecule‐based organic LEDs (SM‐OLEDs) is not mainly due to the inherent degradation of the polymeric emitter itself. Hence, the results open the way to further improvements of PLEDs for real applications to large‐area, high‐resolution, and full‐color flexible displays.  相似文献   

11.
New single‐polymer electroluminescent systems containing two individual emission species—polyfluorenes as a blue host and 2,1,3‐benzothiadiazole derivative units as an orange dopant on the main chain—have been designed and synthesized. The resulting single polymers are found to have highly efficient white electroluminescence with simultaneous blue (λmax = 421 nm/445 nm) and orange emission (λmax = 564 nm) from the corresponding emitting species. The influence of the photoluminescence (PL) efficiencies of both the blue and orange species on the electroluminescence (EL) efficiencies of white polymer light‐emitting diodes (PLEDs) based on the single‐polymer systems has been investigated. The introduction of the highly efficient 4,7‐bis(4‐(N‐phenyl‐N‐(4‐methylphenyl)amino)phenyl)‐2,1,3‐benzothiadiazole unit to the main chain of polyfluorene provides significant improvement in EL efficiency. For a single‐layer device fabricated in air (indium tin oxide/poly(3,4‐ethylenedioxythiophene): poly(styrene sulfonic acid/polymer/Ca/Al), pure‐white electroluminescence with Commission Internationale de l'Eclairage (CIE) coordinates of (0.35,0.32), maximum brightness of 12 300 cd m–2, luminance efficiency of 7.30 cd A–1, and power efficiency of 3.34 lm W–1 can be obtained. This device is approximately two times more efficient than that utilizing a single polyfluorene containing 1,8‐naphthalimide moieties, and shows remarkable improvement over the corresponding blend systems in terms of efficiency and color stability. Thermal treatment of the single‐layer device before cathode deposition leads to the further improvement of the device performance, with CIE coordinates of (0.35,0.34), turn‐on voltage of 3.5 V, luminance efficiency of 8.99 cd A–1, power efficiency of 5.75 lm W–1, external quantum efficiency of 3.8 %, and maximum brightness of 12 680 cd m–2. This performance is roughly comparable to that of white organic light‐emitting diodes (WOLEDs) with multilayer device structures and complicated fabrication processes.  相似文献   

12.
Inkjet and transfer printing processes are combined to easily form patterned poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) films as top anodes of all solution–processed inverted polymer light emitting diodes (PLEDs) on rigid glass and flexible plastic substrates. An adhesive PEDOT:PSS ink is formulated and fully customizable patterns are obtained using the inkjet printing process. In order to transfer the patterned PEDOT:PSS films, adhesion properties at interfaces during multistep transfer printing processes are carefully adjusted. The transferred PEDOT:PSS film on the plastic substrates shows not only a sheet resistance of 260.6 Ω/□ and a transmittance of 92.1% at 550 nm wavelength but also excellent mechanical flexibility. The PLEDs with spin‐coated functional layers sandwiched between the transferred PEDOT:PSS top anodes and inkjet‐printed Ag bottom cathodes are fabricated. The fabricated PLEDs on the plastic substrates show a high current efficiency of 10.4 cd A?1 and high mechanical stability. It is noted that because both Ag and PEDOT:PSS electrodes can be patterned with a high degree of freedom via the inkjet printing process, highly customizable PLEDs with various pattern sizes and shapes are demonstrated on the glass and plastic substrates. Finally, with all solution process, a 5 × 7 passive matrix PLED array is demonstrated.  相似文献   

13.
The advent of special types of transparent electrodes, known as “ultrathin metal electrodes,” opens a new avenue for flexible and printable electronics based on their excellent optical transparency in the visible range while maintaining their intrinsic high electrical conductivity and mechanical flexibility. In this new electrode architecture, introducing metal nucleation inducers (MNIs) on flexible plastic substrates is a key concept to form high‐quality ultrathin metal films (thickness ≈ 10 nm) with smooth and continuous morphology. Herein, this paper explores the role of “polymeric” MNIs in fabricating ultrathin metal films by employing various polymers with different surface energies and functional groups. Moreover, a scalable approach is demonstrated using the ionic self‐assembly on typical plastic substrates, yielding large‐area electrodes (21 × 29.7 cm2) with high optical transmittance (>95%), low sheet resistance (<10 Ω sq?1), and extreme mechanical flexibility. The results demonstrate that this new class of flexible and transparent electrodes enables the fabrication of efficient polymer light‐emitting diodes.  相似文献   

14.
A new series of charge neutral Os(II) pyridyl azolate complexes with either bis(diphenylphosphino)methane (dppm) or cis‐1,2‐bis(diphenylphosphino)ethene (dppee) chelates were synthesized, and their structural, electrochemical, photophysical properties and thermodynamic relationship were established. For the dppm derivatives 3a and 4a , the pyridyl azolate chromophores adopt an eclipse orientation with both azolate segments aligned trans to each other, and with the pyridyl groups resided the sites that are opposite to the phosphorus atoms. In sharp contrast, the reactions with dppee ligand gave rise to the formation of two structural isomers for all three kind of azole chromophores, with both azolate or neutral heterocycles (i.e., pyridyl or isoquinolinyl fragments) located at the mutual trans‐disposition around the Os metal (denoted as series of a and b complexes). These chelating phosphines Os(II) complexes show remarkably high thermal stability, among which and several exhibit nearly unitary phosphorescence yield in deaerated solution at RT. A polymer light‐emitting device (PLED) prepared using 0.4 mol % of 5a as dopant in a blend of poly(vinylcarbazole) (PVK) and 30 wt % of 2‐tert‐butylphenyl‐5‐biphenyl‐1,3,4‐oxadiazole (PBD) exhibits yellow emission with brightness of 7208 cd m–2, an external quantum efficiency of 10.4 % and luminous efficiency of 36.1 cd A–1 at current density of 20 mA cm–2. Upon changing to 1.6 mol % of 6a , the result showed even better brightness of 9212 cd m–2, external quantum efficiency of 12.5 % and luminous efficiency of 46.1 cd A–1 at 20 mA cm–2, while the max. external quantum efficiency of both devices reaches as high as 11.7 % and 13.3 %, respectively. The high PL quantum efficiency, non‐ionic nature, and short radiative lifetime are believed to be the determining factors for this unprecedented achievement.  相似文献   

15.
Alkoxy side‐chain tethered polyfluorene conjugated polyelectrolyte (CPE), poly[(9,9‐bis((8‐(3‐methyl‐1‐imidazolium)octyl)‐2,7‐fluorene)‐alt‐(9,9‐bis(2‐(2‐methoxyethoxy)ethyl)‐fluorene)] dibromide (F8imFO4), is utilized to obtain CPE‐hybridized ZnO nanoparticles (NPs) (CPE:ZnO hybrid NPs). The surface defects of ZnO NPs are passivated through coordination interactions with the oxygen atoms of alkoxy side‐chains and the bromide anions of ionic pendent groups from F8imFO4 to the oxygen vacancies of ZnO NPs, and thereby the fluorescence quenching at the interface of yellow‐emitting poly(p‐phenylene vinylene)/CPE:ZnO hybrid NPs is significantly reduced at the CPE concentration of 4.5 wt%. Yellow‐emitting polymer light‐emitting diodes (PLEDs) with CPE(4.5 wt%):ZnO hybrid NPs as a cathode interfacial layer show the highest device efficiencies of 11.7 cd A?1 at 5.2 V and 8.6 lm W?1 at 3.8 V compared to the ZnO NP only (4.8 cd A?1 at 7 V and 2.2 lm W?1 at 6.6 V) or CPE only (7.3 cd A?1 at 5.2 V and 4.9 lm W?1 at 4.2 V) devices. The results suggest here that the CPE:ZnO hybrid NPs has a great potential to improve the device performance of organic electronics.  相似文献   

16.
We report an efficient non‐doped all‐polymer polymer white‐light‐emitting diode (PWLED) with a fluorescent three‐color, white single polymer as an emissive layer, an ethanol‐soluble phosphonate‐functionalized polyfluorene (PF‐EP) as an electron‐injection/electron‐transport layer, and LiF/Al as a cathode, respectively. The all‐polymer PWLED achieves a peak external quantum efficiency of 6.7%, a forward viewing luminous efficiency of 15.4 cd A?1 and a power efficiency of 11.4 lm W?1, respectively, at a brightness of 347 cd m?2 with Commission Internationale d’Eclairage coordinates of (0.37, 0.42) and color rendering index of 85, which is the best results among the non‐doped PWLEDs. Moreover, this kind of PWLED not only shows excellent color stability, but also achieves high brightness at low voltages. The brightness reaches 1000, 10000, and 46830 cd m?2 at voltages of 4.5, 5.4, and 7.5 V, respectively. The significant enhancement of white‐single‐polymer‐based PWLEDs with PF‐EP/LiF/Al to replace for the commonly used Ca/Al cathode is attributed to the more efficient electron injection at PF‐EP/LiF/Al interfaces, and the coordinated protecting effect of PF‐EP from diffusion of Al atoms into the emissive layer and exciton‐quenching near cathode interfaces. The developed highly efficient non‐doped all‐polymer PWLEDs are well suitable for solution‐processing technology and provide a huge potential of low‐cost large‐area manufacturing for PWLEDs.  相似文献   

17.
For the first time, highly efficient and flexible polymer light emitting diodes (PLEDs) based on silver nanowire (AgNW) electrode, with improved operational stability by simply applying pre‐bias conditioning treatment, are demonstrated. Reverse bias conditioning performed before J–V–L measurement of the PLEDs enables the rough AgNW networks to function properly as a bottom electrode by stabilizing current characteristics, and the devices continue to show consistent operational performances. Conditions of applied bias and thicknesses of active layer are controlled for optimization and it is found that high reverse voltage is required to obtain current stabilization. Adequate thickness of polymer is also necessary to avoid breakdown induced by reverse bias. The essential effect of pre‐bias conditioning on the improved performances of PLEDs is investigated, and it is found that morphological change of AgNW networks contribute to the improvement in device performance. Some of the AgNWs that appear to be pathway of leakage current are deformed, and surface roughness (RMS) of the AgNW film is decreased while the sheet resistance of the film is maintained when the reverse bias conditioning is applied. It is also revealed that pre‐bias conditioning is independent from directionality of the applied bias when utilizing insulating polymer sandwiched between two electrodes.  相似文献   

18.
Light‐emitting diodes exhibiting efficient pure‐white‐light electroluminescence have been successfully developed by using a single polymer: polyfluorene derivatives with 1,8‐naphthalimide chromophores chemically doped onto the polyfluorene backbones. By adjusting the emission wavelength of the 1,8‐naphthalimide components and optimizing the relative content of 1,8‐naphthalimide derivatives in the resulting polymers, white‐light electroluminescence from a single polymer, as opposed to a polymer blend, has been obtained in a device with a configuration of indium tin oxide/poly(3,4‐ethylenedioxythiophene)(50 nm)/polymer(80 nm)/Ca(10 nm)/Al(100 nm). The device exhibits Commission Internationale de l'Eclairage coordinates of (0.32,0.36), a maximum brightness of 11 900 cd m–2, a current efficiency of 3.8 cd A–1, a power efficiency of 2.0 lm W–1, an external quantum efficiency of 1.50 %, and quite stable color coordinates at different driving voltages, even at high luminances of over 5000 cd m–2.  相似文献   

19.
Flexible alternating‐current electroluminescent (ACEL) devices have attracted considerable attention for their ability to produce uniform light emission under bent conditions and have enormous potential for applications in back lighting panels, decorative lighting in automobiles, and panel displays. Nevertheless, flexible ACEL devices generally require a high operating bias, which precludes their implementation in low power devices. Herein, solution‐processed La‐doped barium titanate (BTO:La) nanocuboids (≈150 nm) are presented as high dielectric constant (high‐k) nanodielectrics, which can enhance the dielectric constant of an ACEL device from 2.6 to 21 (at 1 kHz), enabling the fabrication of high‐performance flexible ACEL devices with a lower operating voltage as well as higher brightness (≈57.54 cd m?2 at 240 V, 1 kHz) than devices using undoped BTO nanodielectrics (≈14.3 cd m?2 at 240 V, 1 kHz). Furthermore, a uniform brightness across the whole panel surface of the flexible ACEL devices and excellent device reliability are achieved via the use of uniform networks of crossaligned silver nanowires as highly conductive and flexible electrodes. The results offer experimental validation of high‐brightness flexible ACELs using solution‐processed BTO:La nanodielectrics, which constitutes an important milestone toward the implementation of high‐k nanodielectrics in flexible displays.  相似文献   

20.
New single‐polymer electroluminescent systems containing two individual emission species—polyfluorenes as a blue host and 2,1,3‐benzothiadiazole derivative units as an orange dopant on the main chain—have been designed and synthesized by Wang and co‐workers on p. 957. The resulting single polymers are found to have highly efficient white electroluminescence with simultaneous blue and orange emission from the corresponding emitting species. A single‐layer device has been fabricated that has performance characteristics roughly comparable to those of organic white‐light‐emitting diodes with multilayer device structures. New single‐polymer electroluminescent systems containing two individual emission species—polyfluorenes as a blue host and 2,1,3‐benzothiadiazole derivative units as an orange dopant on the main chain—have been designed and synthesized. The resulting single polymers are found to have highly efficient white electroluminescence with simultaneous blue (λmax = 421 nm/445 nm) and orange emission (λmax = 564 nm) from the corresponding emitting species. The influence of the photoluminescence (PL) efficiencies of both the blue and orange species on the electroluminescence (EL) efficiencies of white polymer light‐emitting diodes (PLEDs) based on the single‐polymer systems has been investigated. The introduction of the highly efficient 4,7‐bis(4‐(N‐phenyl‐N‐(4‐methylphenyl)amino)phenyl)‐2,1,3‐benzothiadiazole unit to the main chain of polyfluorene provides significant improvement in EL efficiency. For a single‐layer device fabricated in air (indium tin oxide/poly(3,4‐ethylenedioxythiophene): poly(styrene sulfonic acid/polymer/Ca/Al), pure‐white electroluminescence with Commission Internationale de l'Eclairage (CIE) coordinates of (0.35,0.32), maximum brightness of 12 300 cd m–2, luminance efficiency of 7.30 cd A–1, and power efficiency of 3.34 lm W–1 can be obtained. This device is approximately two times more efficient than that utilizing a single polyfluorene containing 1,8‐naphthalimide moieties, and shows remarkable improvement over the corresponding blend systems in terms of efficiency and color stability. Thermal treatment of the single‐layer device before cathode deposition leads to the further improvement of the device performance, with CIE coordinates of (0.35,0.34), turn‐on voltage of 3.5 V, luminance efficiency of 8.99 cd A–1, power efficiency of 5.75 lm W–1, external quantum efficiency of 3.8 %, and maximum brightness of 12 680 cd m–2. This performance is roughly comparable to that of white organic light‐emitting diodes (WOLEDs) with multilayer device structures and complicated fabrication processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号