首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Power and electronic components that are self‐healable, deformable, transparent, and self‐powered are highly desirable for next‐generation energy/electronic/robotic applications. Here, an energy‐harvesting triboelectric nanogenerator (TENG) that combines the above features is demonstrated, which can serve not only as a power source but also as self‐powered electronic skin. This is the first time that both of the triboelectric‐charged layer and electrode of the TENG are intrinsically and autonomously self‐healable at ambient conditions. Additionally, comparing with previous partially healable TENGs, its fast healing time (30 min, 100% efficiency at 900% strain), high transparency (88.6%), and inherent superstretchability (>900%) are much more favorable. It consists of a metal‐coordinated polymer as the triboelectrically charged layer and hydrogen‐bonded ionic gel as the electrode. Even after 500 cutting‐and‐healing cycles or under extreme 900%‐strain, the TENG retains its functionality. The generated electricity can be used directly or stored to power commercial electronics. The TENG is further used as self‐powered tactile‐sensing skin in diverse human–machine interfaces including smart glass, an epidermal controller, and phone panel. This TENG with merits including fast ambient‐condition self‐healing, high transparency, intrinsic stretchability, and energy‐extraction and actively‐sensing abilities, can meet wide application needs ranging from deformable/portable/transparent electronics, smart interfaces, to artificial skins.  相似文献   

2.
Printable and flexible electronics attract sustained attention for their low cost, easy scale up, and potential application in wearable and implantable sensors. However, they are susceptible to scratching, rupture, or other damage from bending or stretching due to their “soft” nature compared to their rigid counterparts (Si‐based electronics), leading to loss of functionality. Self‐healing capability is highly desirable for these “soft” electronic devices. Here, a versatile self‐healing polymer blend dielectric is developed with no added salts and it is integrated into organic field transistors (OFETs) as a gate insulator material. This polymer blend exhibits an unusually high thin film capacitance (1400 nF cm?2 at 120 nm thickness and 20–100 Hz). Furthermore, it shows pronounced electrical and mechanical self‐healing behavior, can serve as the gate dielectric for organic semiconductors, and can even induce healing of the conductivity of a layer coated above it together with the process of healing itself. Based on these attractive properties, we developed a self‐healable, low‐voltage operable, printed, and flexible OFET for the first time, showing promise for vapor sensing as well as conventional OFET applications.  相似文献   

3.
The facile fabrication of thin and foldable self‐healing electronics on a poly(vinyl alcohol)/cellulose nanocrystal (PVA/CNC) composite film is reported. The self‐healing property of the PVA/CNC nanocomposite film can be activated by spraying water on the film surface, via dynamic formation of hydrogen bonding. The self‐healing efficiency of PVA/CNC is influenced by the content of CNC in the film, pH of the spraying solution, and the temperature. Via vacuum filtration and pattern transfer techniques, both a supercapacitor and a temperature sensor are fabricated on the same PVA/CNC film using gold nanosheet (AuNS) and polyaniline/multiwalled nanotube (PANI/MWCNT) electrodes. The fabricated supercapacitor with a gel‐type electrolyte exhibits a high electrochemical performance, and the thermoresistive temperature sensor shows a linear sensitivity with a fast response. Both devices exhibit superior mechanical stability and self‐healing property over 100 repetitive folding and five repetitive healing cycles, respectively, retaining the device performance owing to the percolated network of the conductive materials. This work demonstrates that our paper‐like thin PVA/CNC film‐based self‐healable devices can serve as highly durable and deformable electronics with longevity.  相似文献   

4.
The development of flexible and stretchable electronics has attracted intensive attention for their promising applications in next‐generation wearable functional devices. However, these stretchable devices that are made in a conventional planar format have largely hindered their development, especially in highly stretchable conditions. Herein, a novel type of highly stretchable, fiber‐based triboelectric nanogenerator (fiber‐like TENG) for power generation is developed. Owing to the advanced structural designs, including the fiber‐convolving fiber and the stretchable electrodes on elastic silicone rubber fiber, the fiber‐like TENG can be operated at stretching mode with high strains up to 70% and is demonstrated for a broad range of applications such as powering a commercial capacitor, LCD screen, digital watch/calculator, and self‐powered acceleration sensor. This work verifies the promising potential of a novel fiber‐based structure for both power generation and self‐powered sensing.  相似文献   

5.
Healable, adhesive, wearable, and soft human‐motion sensors for ultrasensitive human–machine interaction and healthcare monitoring are successfully assembled from conductive and human‐friendly hybrid hydrogels with reliable self‐healing capability and robust self‐adhesiveness. The conductive, healable, and self‐adhesive hybrid network hydrogels are prepared from the delicate conformal coating of conductive functionalized single‐wall carbon nanotube (FSWCNT) networks by dynamic supramolecular cross‐linking among FSWCNT, biocompatible polyvinyl alcohol, and polydopamine. They exhibit fast self‐healing ability (within 2 s), high self‐healing efficiency (99%), and robust adhesiveness, and can be assembled as healable, adhesive, and soft human‐motion sensors with tunable conducting channels of pores for ions and framework for electrons for real time and accurate detection of both large‐scale and tiny human activities (including bending and relaxing of fingers, walking, chewing, and pulse). Furthermore, the soft human‐motion sensors can be enabled to wirelessly monitor the human activities by coupling to a wireless transmitter. Additionally, the in vitro cytotoxicity results suggest that the hydrogels show no cytotoxicity and can facilitate cell attachment and proliferation. Thus, the healable, adhesive, wearable, and soft human‐motion sensors have promising potential in various wearable, wireless, and soft electronics for human–machine interfaces, human activity monitoring, personal healthcare diagnosis, and therapy.  相似文献   

6.
Electronic tattoos (E‐tattoos), which can be intimately mounted on human skin for noninvasive and high‐fidelity sensing, have attracted the attention of researchers in the field of wearable electronics. However, fabricating E‐tattoos that are capable of self‐healing and sensing multistimuli, similar to the inherent attributes of human skin, is still challenging. Herein, a healable and multifunctional E‐tattoo based on a graphene/silk fibroin/Ca2+ (Gr/SF/Ca2+) combination is reported. The highly flexible E‐tattoos are prepared through printing or writing using Gr/SF/Ca2+ suspension. The graphene flakes distributed in the matrix form an electrically conductive path that is responsive to environmental changes, such as strain, humidity, and temperature variations, endowing the E‐tattoo with high sensitivity to multistimuli. The performance of the E‐tattoo is investigated as a strain, humidity, and temperature sensor that shows high sensitivity, a fast response, and long‐term stability. The E‐tattoo is remarkably healed after damage by water because of the reformation of hydrogen and coordination bonds at the fractured interface. The healing efficiency is 100% in only 0.3 s. Finally, as proof of concept, its applications for monitoring of electrocardiograms, breathing, and temperature are shown. Based on its unique properties and superior performance, the Gr/SF/Ca2+ E‐tattoo may be a promising candidate material for epidermal electronics.  相似文献   

7.
Triboelectric nanogenerator (TENG) is a newly invented technology that can effectively harvest ambient mechanical energy from various motions with promising applications in portable electronics, self‐powered sensor networks, etc. Here, by coupling TENG and a thin film of ferroelectric polymer, a new application is designed for TENG as a self‐powered memory system for recording a mechanical displacement/trace. The output voltage produced by the TENG during motion can polarize the dipole moments in the ferroelectric thin film. Later, by applying a displacement current measurement to detect the polarization density in the ferroelectric film, the motion information of the TENG can be directly read. The sliding TENG and the single‐electrode TENG matrix are both utilized for realizing the memorization of the motion trace in one‐dimensional and two‐dimensional space, respectively. Currently, the ferroelectric thin film with a size of 3.1 mm2 can record a minimum area changing of 30 mm2 and such resolution can still be possibly improved. These results prove that the ferroelectric polymer is an effective memory material to work together with TENG and thereby the fabricated memory system can potentially be used as a self‐powered displacement monitor.  相似文献   

8.
The long application life and stable performance of stretchable electronics have been putting forward requirements for both higher mechanical properties and better self‐healing ability of polymeric substrates. However, for self‐healing materials, simultaneously improving stretchability and robustness is still challenging. Here, by incorporating sliding crosslinker (polyrotaxanes) and hydrogen bonds into a polymer, a highly stretchable and self‐healable elastomer with good mechanical strength is achieved. The elastomer exhibits very high stretchability, such that it can be stretched to 2800% with a fracture strength of 1.05 MPa. Moreover, the elastomer can achieve nearly complete self‐healing (93%) at 55 °C. Next, tensile tests under different temperatures, step extension experiments, and in situ small angle X‐ray scattering confirm that the excellent stretchability is attributed to the combined effects of sliding cyclodextrins along guest chains and hydrogen bonds. Furthermore, a strain sensor by coating the single‐wall carbon nanotubes onto the surface of the elastic substrate is fabricated.  相似文献   

9.
Mechanical failure of π‐conjugated polymer thin films is unavoidable under cyclic loading conditions, due to intrinsic defects and poor resistance to crack propagation. Here, the first tear‐resistant and room‐temperature self‐healable semiconducting composite is presented, consisting of conjugated polymers and butyl rubber elastomers. This new composite displays both a record‐low elastic modulus (<1 MPa) and ultrahigh deformability with fracture strain above 800%. More importantly, failure behavior is not sensitive to precut notches under deformation. Autonomous self‐healing at room temperature, both mechanical and electronic, is demonstrated through the physical contact of two separate films. The composite film also shows device stability in the ambient environment over 5 months due to much‐improved barrier property to both oxygen and water. Butyl rubber is broadly applicable to various p‐type and n‐type semiconducting polymers for fabricating self‐healable electronics to provide new resilient electronics that mimic the tear resistance and healable property of human skin.  相似文献   

10.
Self‐healable and stretchable energy‐harvesting materials can provide a new avenue for the realization of self‐powered wearable electronics, including electronic skins, whose main materials are required to be robust to and stable under external damage and severe mechanical stresses. However, thermoelectric (TE) materials showing both self‐healing properties and stretchability have not yet been demonstrated despite their great potential to harvest thermal energy in the human body. As most existing TE materials are either mechanically brittle or unrecoverable after being subjected to damage, a novel approach is necessary for designing such materials. Herein, self‐healable and stretchable TE materials based on all‐organic composite system wherein polymer semiconductor nanowires are p‐doped with a molecular dopant and embedded in a thermoplastic elastomer matrix are reported. The polymer nanowires are electrically percolated in the matrix, and the resulting composite materials exhibit good TE performance. The composites also exhibit both excellent self‐healing properties under mild heat and pressure conditions and good stretchability. It is believed that this work can be a cornerstone for the design of self‐healable and stretchable energy‐harvesting materials as it provides useful guidelines for imparting electrical conductivity to insulating thermoplastic elastomers, which typically possess versatile and useful mechanical properties.  相似文献   

11.
Transdermal drug delivery (TDD) systems with feedback control have attracted extensive research and clinical interest owing to their unique advantages of convenience, self‐administration, and safety. Here, a self‐powered wearable iontophoretic TDD system that can be driven and regulated by the energy harvested from biomechanical motions is proposed for closed‐loop motion detection and therapy. A wearable triboelectric nanogenerator (TENG) is used as the motion sensor and energy harvester that can convert biomechanical motions into electricity for iontophoresis without stored‐energy power sources, while a hydrogel‐based soft patch with side‐by‐side electrodes is designed to enable noninvasive iontophoretic TDD. Proof‐of‐concept experiments on pig skin with dyes as model drugs successfully demonstrate the feasibility of the proposed system. This work not only extends the application of TENG in the biomedical field, but may also provide a cost‐effective solution for noninvasive, electrically assisted TDD with closed‐loop sensing and treatment.  相似文献   

12.
It is a challenge to manufacture flexible sensors that possess easily distinguishable biomotion signals, strong response reliability, and excellent self‐healing capability. Herein, a self‐healing sensor with tunable positive/negative piezoresistivity is designed by the construction of hierarchical structure connected through supramolecular metal–ligand coordination bonds. The developed sensors can be integrated with the human body to detect multiple tiny signals, such as pronunciation, coughing, and deep breathing. Interestingly, the nanostructured elastomer sensor with and without a flexible yarn electrode shows negative and positive current signals, respectively, making it easy to be identify. Furthermore, it exhibits very fast (2 min), autonomous, and repeatable self‐healing ability with high‐healing efficiency (88.6% after the third healing process). The healed samples still possess flexibility, high sensitivity, and accurate detection capability, even after bending over 10 000 cycles. The excellent biomimetic self‐healing performance combined with the tunable piezoresistivity make it promising for next‐generation wearable electronics.  相似文献   

13.
Triboelectric nanogenerators (TENG) are a possible power source for wearable electronics, but the conventional electrode materials for TENG are metals such as Cu and Al that are easy to be oxidized or corroded in some harsh environments. In this paper, metal electrode material is replaced by an electrical conducting polymer, polypyrrole (PPy), for the first time. Moreover, by utilizing PPy with micro/nanostructured surface as the triboelectric layer, the charge density generated is significantly improved, more superior to that of TENG with metals as the triboelectric layer. As this polymer‐based TENG is further integrated with PPy‐based supercapacitors, an all‐plastic‐materials based self‐charging power system is built to provide sustainable power with excellent long cycling life. Since the environmental friendly materials are adopted and the facile electrochemical deposition technique is applied, the new self‐charging power system can be a practical and low cost power solution for many applications.  相似文献   

14.
Mimicking human skin's functions to develop electronic skins has inspired tremendous efforts in design and synthesis of novel soft materials with simplified fabrication methods. However, it still remains a great challenge to develop electronically conductive materials that are both stretchable and self‐healable. Here it is demonstrated that a ternary polymer composite comprised of polyaniline, polyacrylic acid, and phytic acid can exhibit high stretchability ( ≈ 500%) and excellent self‐healing properties. The polymer composite with optimized composition shows an electrical conductivity of 0.12 S cm?1. On rupture, both electrical and mechanical properties can be restored with ≈ 99% efficiency in a 24 h period, which is enabled by the dynamic hydrogen bonding and electrostatic interactions. It is further shown that this composite is both strain and pressure sensitive, and therefore can be used for fabricating strain and pressure sensors to detect a variety of mechanical deformations with ultrahigh sensitivity. The sensitivity and sensing range are the highest among all of the reported self‐healable piezoresistive pressure sensors and even surpass most flexible mechanical sensors. Notably, this composite is prepared via a solution casting process, which potentially allows for large‐area, low‐cost fabrication electronic skins.  相似文献   

15.
The surface properties and self‐adhesion mechanism of self‐healing poly(butyl acrylate) (PBA) copolymers containing comonomers with 2‐ureido‐4[1H]‐pyrimidinone quadruple hydrogen bonding groups (UPy) are investigated using a surface forces apparatus (SFA) coupled with a top‐view optical microscope. The surface energies of PBA–UPy4.0 and PBA–UPy7.2 (with mole percentages of UPy 4.0% and 7.2%, respectively) are estimated to be 45–56 mJ m?2 under dry condition by contact angle measurements using a three probe liquid method and also by contact and adhesion mechanics tests, as compared to the reported literature value of 31–34 mJ m?2 for PBA, an increase that is attributed to the strong UPy–UPy H‐bonding interactions. The adhesion strengths of PBA–UPy polymers depend on the UPy content, contact time, temperature and humidity level. Fractured PBA–UPy films can fully recover their self‐adhesion strength to 40, 81, and 100% in 10 s, 3 h, and 50 h, respectively, under almost zero external load. The fracture patterns (i.e., viscous fingers and highly “self‐organized” parallel stripe patterns) have implications for fabricating patterned surfaces in materials science and nanotechnology. These results provide new insights into the fundamental understanding of adhesive mechanisms of multiple hydrogen‐bonding polymers and development of novel self‐healing and stimuli‐responsive materials.  相似文献   

16.
The development of wearable and large‐area fabric energy harvester and sensor has received great attention due to their promising applications in next‐generation autonomous and wearable healthcare technologies. Here, a new type of “single” thread‐based triboelectric nanogenerator (TENG) and its uses in elastically textile‐based energy harvesting and sensing have been demonstrated. The energy‐harvesting thread composed by one silicone‐rubber‐coated stainless‐steel thread can extract energy during contact with skin. With sewing the energy‐harvesting thread into a serpentine shape on an elastic textile, a highly stretchable and scalable TENG textile is realized to scavenge various kinds of human‐motion energy. The collected energy is capable to sustainably power a commercial smart watch. Moreover, the simplified single triboelectric thread can be applied in a wide range of thread‐based self‐powered and active sensing uses, including gesture sensing, human‐interactive interfaces, and human physiological signal monitoring. After integration with microcontrollers, more complicated systems, such as wireless wearable keyboards and smart beds, are demonstrated. These results show that the newly designed single‐thread‐based TENG, with the advantage of interactive, responsive, sewable, and conformal features, can meet application needs of a vast variety of fields, ranging from wearable and stretchable energy harvesters to smart cloth‐based articles.  相似文献   

17.
Wearable smart electronic devices based on wireless systems use batteries as a power source. However, recent miniaturization and various functions have increased energy consumption, resulting in problems such as reduction of use time and frequent charging. These factors hinder the development of wearable electronic devices. In order to solve this energy problem, research studies on triboelectric nanogenerators (TENGs) are conducted based on the coupling of contact‐electrification and electrostatic induction effects for harvesting the vast amounts of biomechanical energy generated from wearer movement. The development of TENGs that use a variety of structures and materials based on the textile platform is reviewed, including the basic components of fibers, yarns, and fabrics made using various weaving and knitting techniques. These textile‐based TENGs are lightweight, flexible, highly stretchable, and wearable, so that they can effectively harvest biomechanical energy without interference with human motion, and can be used as activity sensors to monitor human motion. Also, the main application of wearable self‐powered systems is demonstrated and the directions of future development of textile‐based TENG for harvesting biomechanical energy presented.  相似文献   

18.
With the advent of flexible and wearable electronics and sensors, there is an urgent need to develop energy‐harvesting solutions that are compatible with such wearables. However, many of the proposed energy‐harvesting solutions lack the necessary mechanical properties, which make them susceptible to damage by repetitive and continuous mechanical stresses, leading to serious degradation in device performance. Developing new energy materials that possess high deformability and self‐healability is essential to realize self‐powered devices. Herein, a thermoelectric ternary composite is demonstrated that possesses both self‐healing and stretchable properties produced via 3D‐printing method. The ternary composite films provide stable thermoelectric performance during viscoelastic deformation, up to 35% tensile strain. Importantly, after being completely severed by cutting, the composite films autonomously recover their thermoelectric properties with a rapid response time of around one second. Using this self‐healable and solution‐processable composite, 3D‐printed thermoelectric generators are fabricated, which retain above 85% of their initial power output, even after repetitive cutting and self‐healing. This approach represents a significant step in achieving damage‐free and truly wearable 3D‐printed organic thermoelectrics.  相似文献   

19.
Mechanical failure along a conductive pathway can cause unexpected shutdown of an electronic devices, ultimately limiting the device lifetime. To address this problem, various systems to realize healable electrical conductors have been proposed; however, rapid, noninvasive, and on‐demand healing, factors that are all synergistically required, especially for wearable device applications, still remains challenging. Here, a light‐powered healable electrical conductor (conceptualized as photofluidic diffusional system) is proposed for simple‐, fast‐, and easy‐to‐implement wearable devices (e.g., the electronic skin, sensitive to mechanical motion). Contrary to other implementations such as capsules, heat, water, and mechanical forces, green light even with low intensity has potential to provide fast (less than 3 min) and repetitive recovery of a damaged electrical conductor without any direct invasion. Also, the multiple, irregular cracks resulting from vigorous motions of wearable devices can be simultaneously recovered regardless of the light incident angles and crack propagation directions, thus, making light‐powered healing more accessible to wearable devices beyond existing system options. To develop and demonstrate the key concepts of this system, combined studies on materials, integrations, and light‐powering strategy for recovering a damaged wearable electrical conductor are systematically carried out in the present work.  相似文献   

20.
The utilization of dynamic covalent and noncovalent bonds in polymeric materials offers the possibility to regenerate mechanical damage, inflicted on the material, and is therefore of great interest in the field of self‐healing materials. For the design of a new class of self‐healing materials, methacrylate containing copolymers with acylhydrazones as reversible covalent crosslinkers are utilized. The self‐healing polymer networks are obtained by a bulk polymerization of an acylhydrazone crosslinker and commercially available methacrylates as comonomers to fine‐tune the Tg of the systems. The influence of the amount of acylhydrazone crosslinker and the self‐healing behavior of the polymers is studied in detail. Furthermore, the basic healing mechanism and the corresponding mechanical properties are analyzed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号