首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 404 毫秒
1.
3D printing technology has been widely explored for the rapid design and fabrication of hydrogels, as required by complicated soft structures and devices. Here, a new 3D printing method is presented based on the rheology modifier of Carbomer for direct ink writing of various functional hydrogels. Carbomer is shown to be highly efficient in providing ideal rheological behaviors for multifunctional hydrogel inks, including double network hydrogels, magnetic hydrogels, temperature‐sensitive hydrogels, and biogels, with a low dosage (at least 0.5% w/v) recorded. Besides the excellent printing performance, mechanical behaviors, and biocompatibility, the 3D printed multifunctional hydrogels enable various soft devices, including loadable webs, soft robots, 4D printed leaves, and hydrogel Petri dishes. Moreover, with its unprecedented capability, the Carbomer‐based 3D printing method opens new avenues for bioprinting manufacturing and integrated hydrogel devices.  相似文献   

2.
Stimuli responsive hydrogels that can change shape in response to applied external stimuli are appealing for soft robotics, biomedical devices, drug delivery, and actuators. However, existing 3D printed shape morphing materials are non-biodegradable, which limits their use in biomedical applications. Here, 3D printed protein-based hydrogels are developed and applied for programmable structural changes under the action of temperature, pH, or an enzyme. Key to the success of this strategy is the use of methacrylated bovine serum albumin (MA–BSA) as a biodegradable building block to Pickering emulsion gels in the presence of N-isopropylacrylamide or 2-dimethylaminoethyl methacrylate. These shear-thinning gels are ideal for direct ink write (DIW) 3D printing of multi-layered stimuli-responsive hydrogels. While poly(N-isopropylacrylamide) and poly(dimethylaminoethyl methacrylate) introduce temperature and pH-responsive properties into the printed objects, a unique feature of this strategy is an enzyme-triggered shape transformation based on the degradation of the bovine serum albumin network. To highlight this technique, protein-based hydrogels that reversibly change shape based on environmental temperature and pH are fabricated, and irreversibly altered by enzymatic degradation, which demonstrates the complexity that can be introduced into 4D printed systems.  相似文献   

3.
Porous structures have emerged as a breakthrough of shape‐morphing hydrogels to achieve a rapid response. However, these porous actuators generally suffer from a lack of complexity and diversity in obtained 3D shapes. Herein, a simple yet versatile strategy is developed to generate shape‐morphing hydrogels with both fast deformation and enhanced designability in 3D shapes by combining two promising technologies: electrospinning and 3D printing. Elaborate patterns are printed on mesostructured stimuli‐responsive electrospun membranes, modulating in‐plane and interlayer internal stresses induced by swelling/shrinkage mismatch, and thus guiding morphing behaviors of electrospun membranes to adapt to changes of the environment. With this strategy, a series of fast deformed hydrogel actuators are constructed with various distinctive responsive behaviors, including reversible/irreversible formations of 3D structures, folding of 3D tubes, and formations of 3D structures with multi low‐energy states. It is worth noting that although poly(N‐isopropyl acrylamide) is chosen as the model system in the present research, our strategy is applicable to other stimuli‐responsive hydrogels, which enriches designs of rapid deformed hydrogel actuators.  相似文献   

4.
Direct‐ink writing (DIW), a rapidly growing and advancing form of additive manufacturing, provides capacities for on‐demand tailoring of materials to meet specific requirements for final designs. The penultimate challenge faced with the increasing demand of customization is to extend beyond modification of shape to create 4D structures, dynamic 3D structures that can respond to stimuli in the local environment. Patterning material gradients is foundational for assembly of 4D structures, however, there remains a general need for useful materials chemistries to generate gray scale gradients via DIW. Here, presented is a simple materials assembly paradigm using DIW to pattern ionotropic gradients in hydrogels. Using structures that architecturally mimic sea‐jelly organisms, the capabilities of spatial patterning are highlighted as exemplified by selectively programming the valency of the ion‐binding agents. Spatial gradients, when combined with geometry, allow for programming the flexibility and movement of iron oxide nanoparticle–loaded ionotropic hydrogels to generate 4D‐printed structures that actuate in the presence of local magnetic fields. This work highlights approaches to 4D design complexity that exploits 3D‐printed gray‐scale/gradient mechanics.  相似文献   

5.
Convenient patterning and precisely programmable shape deformations are crucial for the practical applications of shape deformable hydrogels. Here, a facile and versatile computer‐assisted ion inkjet printing technique is described that enables the direct printing of batched, very complicated patterns, especially those with well‐defined, programmable variation in cross‐linking densities, on one or both surfaces of a large‐sized hydrogel sample. A mechanically strong hydrogel containing poly(sodium acrylate) is first prepared, and then digital patterns are printed onto the hydrogel surfaces by using a commercial inkjet printer and an aqueous ferric solution. The complexation between the polyelectrolyte and ferric ions increases the cross‐linking density of the printed regions, and hence the gel sample can undergo shape deformation upon swelling/deswelling. The deformation rates and degrees of the hydrogels can be conveniently adjusted by changing the printing times or the different/gradient grayscale distribution of designed patterns. By printing appropriate patterns on one or both surfaces of the hydrogel sheets, many complex 3D shapes are obtained from shape deformations upon swelling/deswelling, such as cylindrical shell and forsythia flower (patterns on one surface), ding (patterns on both surfaces), blooming flower (different/gradient grayscale distributive patterns on one surface), and non‐Euclidean plates (different/gradient grayscale distributive patterns on both surfaces).  相似文献   

6.
Stimuli‐responsive hydrogels with decent electrical properties are a promising class of polymeric materials for a range of technological applications, such as electrical, electrochemical, and biomedical devices. In this paper, thermally responsive and conductive hybrid hydrogels are synthesized by in situ formation of continuous network of conductive polymer hydrogels crosslinked by phytic acid in poly(N‐isopropylacrylamide) matrix. The interpenetrating binary network structure provides the hybrid hydrogels with continuous transporting path for electrons, highly porous microstructure, strong interactions between two hydrogel networks, thus endowing the hybrid hydrogels with a unique combination of high electrical conductivity (up to 0.8 S m?1), high thermoresponsive sensitivity (significant volume change within several seconds), and greatly enhanced mechanical properties. This work demonstrates that the architecture of the filling phase in the hydrogel matrix and design of hybrid hydrogel structure play an important role in determining the performance of the resulting hybrid material. The attractive performance of these hybrid hydrogels is further demonstrated by the developed switcher device which suggests potential applications in stimuli‐responsive electronic devices.  相似文献   

7.
3D‐printing is emerging as a technology to introduce microchannels into hydrogels, for the perfusion of engineered constructs. Although numerous techniques have been developed, new techniques are still needed to obtain the complex geometries of blood vessels and with materials that permit desired cellular responses. Here, a printing process where a shear‐thinning and self‐healing hydrogel “ink” is injected directly into a “support” hydrogel with similar properties is reported. The support hydrogel is further engineered to undergo stabilization through a thiol‐ene reaction, permitting (i) the washing of the ink to produce microchannels and (ii) tunable properties depending on the crosslinker design. When adhesive peptides are included in the support hydrogel, endothelial cells form confluent monolayers within the channels, across a range of printed configurations (e.g., straight, stenosis, spiral). When protease‐degradable crosslinkers are used for the support hydrogel and gradients of angiogenic factors are introduced, endothelial cells sprout into the support hydrogel in the direction of the gradient. This printing approach is used to investigate the influence of channel curvature on angiogenic sprouting and increased sprouting is observed at curved locations. Ultimately, this technique can be used for a range of biomedical applications, from engineering vascularized tissue constructs to modeling in vitro cultures.  相似文献   

8.
Botanical systems have evolved the intriguing ability to respond to diverse stimuli due to long‐term survival competition. Mimicking these dynamic behaviors has greatly advanced the developments in wide fields ranging from soft robotics, precision sensors to drug delivery and biomedical devices. However, realization of stimuli‐responsive components at the microscale with high response speed still remains a significant challenge. Herein, the miniature biomimetic 4D printing of pH‐responsive hydrogel is reported in spatiotemporal domain by femtosecond laser direct writing. The dimension of the printed architectures is at the microscale (<102 µm) and the response speed is reduced down to subsecond level (<500 ms). Shape transformation with multiple degrees of freedom is accomplished by taking advantage of pH‐triggered expansion, contraction, and torsion. Biomimetic complex shape‐morphing is enabled by adopting flexible scanning strategies. In addition, application of this 4D‐printed micro‐architecture in selective micro‐object trapping and releasing is demonstrated, showcasing its possibilities in micromanipulation, single‐cell analysis, and drug delivery.  相似文献   

9.
3D printing of adaptive and dynamic structures, also known as 4D printing, is one of the key challenges in contemporary materials science. The additional dimension refers to the ability of 3D printed structures to change their properties—for example, shape—over time in a controlled fashion as the result of external stimulation. Within the last years, significant efforts have been undertaken in the development of new responsive materials for printing at the macroscale. However, 4D printing at the microscale is still in its early stages. Thus, this progress report will focus on emerging materials for 4D printing at the microscale as well as their challenges and potential applications. Hydrogels and liquid crystalline and composite materials have been identified as the main classes of materials representing the state of the art of the growing field. For each type of material, the challenges and critical barriers in the material design and their performance in 4D microprinting are discussed. Importantly, further necessary strategies are proposed to overcome the limitations of the current approaches and move toward their application in fields such as biomedicine, microrobotics, or optics.  相似文献   

10.
Novel poly(N‐isopropylacrylamide)‐clay (PNIPAM‐clay) nanocomposite (NC) hydrogels with both excellent responsive bending and elastic properties are developed as temperature‐controlled manipulators. The PNIPAM‐clay NC structure provides the hydrogel with excellent mechanical property, and the thermoresponsive bending property of the PNIPAM‐clay NC hydrogel is achieved by designing an asymmetrical distribution of nanoclays across the hydrogel thickness. The hydrogel is simply fabricated by a two‐step photo polymerization. The thermoresponsive bending property of the PNIPAM‐clay NC hydrogel is resulted from the unequal forces generated by the thermoinduced asynchronous shrinkage of hydrogel layers with different clay contents. The thermoresponsive bending direction and degree of the PNIPAM‐clay NC hydrogel can be adjusted by controlling the thickness ratio of the hydrogel layers with different clay contents. The prepared PNIPAM‐clay NC hydrogels exhibit rapid, reversible, and repeatable thermoresponsive bending/unbending characteristics upon heating and cooling. The proposed PNIPAM‐clay NC hydrogels with excellent responsive bending property are demonstrated as temperature‐controlled manipulators for various applications including encapsulation, capture, and transportation of targeted objects. They are highly attractive material candidates for stimuli‐responsive “smart” soft robots in myriad fields such as manipulators, grippers, and cantilever sensors.  相似文献   

11.
The emerging 3D printing technique allows for tailoring hydrogel‐based soft structure tissue scaffolds for individualized therapy of osteochondral defects. However, the weak mechanical strength and uncontrollable swelling intrinsic to conventional hydrogels restrain their use as bioinks. Here, a high‐strength thermoresponsive supramolecular copolymer hydrogel is synthesized by one‐step copolymerization of dual hydrogen bonding monomers, N‐acryloyl glycinamide, and N‐[tris(hydroxymethyl)methyl] acrylamide. The obtained copolymer hydrogels demonstrate excellent mechanical properties—robust tensile strength (up to 0.41 MPa), large stretchability (up to 860%), and high compressive strength (up to 8.4 MPa). The rapid thermoreversible gel ? sol transition behavior makes this copolymer hydrogel suitable for direct 3D printing. Successful preparation of 3D‐printed biohybrid gradient hydrogel scaffolds is demonstrated with controllable 3D architecture, owing to shear thinning property which allows continuous extrusion through a needle and also immediate gelation of fluid upon deposition on the cooled substrate. Furthermore, this biohybrid gradient hydrogel scaffold printed with transforming growth factor beta 1 and β‐tricalciumphosphate on distinct layers facilitates the attachment, spreading, and chondrogenic and osteogenic differentiation of human bone marrow stem cells (hBMSCs) in vitro. The in vivo experiments reveal that the 3D‐printed biohybrid gradient hydrogel scaffolds significantly accelerate simultaneous regeneration of cartilage and subchondral bone in a rat model.  相似文献   

12.
4D printing has attracted tremendous interest since its first conceptualization in 2013. 4D printing derived from the fast growth and interdisciplinary research of smart materials, 3D printer, and design. Compared with the static objects created by 3D printing, 4D printing allows a 3D printed structure to change its configuration or function with time in response to external stimuli such as temperature, light, water, etc., which makes 3D printing alive. Herein, the material systems used in 4D printing are reviewed, with emphasis on mechanisms and potential applications. After a brief overview of the definition, history, and basic elements of 4D printing, the state‐of‐the‐art advances in 4D printing for shape‐shifting materials are reviewed in detail. Both single material and multiple materials using different mechanisms for shape changing are summarized. In addition, 4D printing of multifunctional materials, such as 4D bioprinting, is briefly introduced. Finally, the trend of 4D printing and the perspectives for this exciting new field are highlighted.  相似文献   

13.
Hydrogels are important functional materials useful for 3D cell culture, tissue engineering, 3D printing, drug delivery, sensors, or soft robotics. The ability to shape hydrogels into defined 3D structures, patterns, or particles is crucial for biomedical applications. Here, the rapid photodegradability of commonly used polymethacrylate hydrogels is demonstrated without the need to incorporate additional photolabile functionalities. Hydrogel degradation depths are quantified with respect to the irradiation time, light intensity, and chemical composition. It can be shown that these parameters can be utilized to control the photodegradation behavior of polymethacrylate hydrogels. The photodegradation kinetics, the change in mechanical properties of polymethacrylate hydrogels upon UV irradiation, as well as the photodegradation products are investigated. This approach is then exploited for microstructuring and patterning of hydrogels including hydrogel gradients as well as for the formation of hydrogel particles and hydrogel arrays of well‐defined shapes. Cell repellent but biocompatible hydrogel microwells are fabricated using this method and used to form arrays of cell spheroids. As this method is based on readily available and commonly used methacrylates and can be conducted using cheap UV light sources, it has vast potential to be applied by laboratories with various backgrounds and for diverse applications.  相似文献   

14.
Current fluorescence‐based anti‐counterfeiting strategies primarily encode information onto single 2D planes and underutilize the possibility of encrypting data inside 3D structures to achieve multistage data security. Herein, a fluorescent‐hydrogel‐based 3D anti‐counterfeiting platform is demonstrated, which extends data encryption capability from single 2D planes to complex 3D hydrogel origami geometries. The materials are based on perylene‐tetracarboxylic‐acid‐functionalized gelatin/poly(vinyl alcohol) hydrogels, which simultaneously show Fe3+‐responsive fluorescence quenching, borax‐triggered shape memory, and self‐healing properties. By employing an origami technique, various complex 3D hydrogel geometries are facilely fabricated. On the basis of these results, a 3D anti‐counterfeiting platform is demonstrated, in which the data printed by using Fe3+ as the ink are safely protected inside complex 3D hydrogel origami structures. In this way, the encrypted data cannot be read until after specially predesigned procedures (both the shape recovery and UV light illumination actions), indicating higher‐level information security than the traditional 2D counterparts. This facile and general strategy opens up the possibility of utilizing 3D fluorescent hydrogel origami for data information encryption and protection.  相似文献   

15.
Currently, most customized hydrogels can only be processed via extrusion-based 3D printing techniques, which is limited by printing efficiency and resolution. Here, a simple strategy for the rapid fabrication of customized hydrogels using a photocurable 3D printing technique is presented. This technique has been rarely used because the presence of water increases the molecular distance between the polymer chains and reduces the monomer polymerization rate, resulting in the failure of rapid solid-liquid separation during printing. Although adding cross-linkers to printing inks can effectively accelerate 3D cross-linked network formation, chemical cross-linking may result in reduced toughness and self-healing ability of the hydrogel. Therefore, an interpenetrated-network hydrogel based on non-covalent interactions is designed to form physical cross-links, affording fast solid-liquid separation. Poly(acrylic acid (AA)-N-vinyl-2-pyrrolidone (NVP)) and carboxymethyl cellulose (CMC) are cross-linked via Zn2+-ligand coordination and hydrogen bonding; the resulting mixed AA-NVP/CMC solution is used as the printing ink. The printed poly(AA-NVP/CMC) hydrogel exhibited high tensile toughness (3.38 MJ m−3) and superior self-healing ability (healed stress: 81%; healed strain: 91%). Some objects like manipulator are successfully customized by photocurable 3D printing using hydrogels with high toughness and complex structures. This high-performance hydrogel has great potential for application in flexible wearable sensors.  相似文献   

16.
Stimuli‐responsive hydrogels with high mechanical strength, programmable deformation, and simple preparation are essential for their practical applications. Here the preparation of tough hydrogels with programmable and complex shape deformations is reported. Janus hydrogels with different compositions and hydrophilic natures on the two surfaces are first prepared, and they exhibit reversible bending/unbending upon swelling/deswelling processes. More impressively, the deformation rate and extent of the hydrogels can further be easily controlled through an extremely simple and versatile ion dip‐dyeing (IDD) and/or ion transfer printing (ITP) method. By selectively printing proper patterns on 1D gel strips, 2D gel sheets and 3D gel structures, the transformations from 1D to 2D, 2D to 3D, and 3D to more complicated 3D shapes can be achieved after swelling the ion‐patterned hydrogels in water. The swelling‐deformable Janus and ion‐patterned hydrogels with high mechanical strengths and programmable deformations can find many practical applications, such as soft machines.  相似文献   

17.
The structure of tissue plays a critical role in its function and therefore a great deal of attention has been focused on engineering native tissue‐like constructs for tissue engineering applications. Transfer printing of cell layers is a new technology that allows controlled transfer of cell layers cultured on smart substrates with defined shape and size onto tissue‐specific defect sites. Here, the temperature‐responsive swelling‐deswelling of the hydrogels with groove patterns and their versatile and simple use as a template to harvest cell layers with anisotropic extracellular matrix assembly is reported. The hydrogels with a cell‐interactive peptide and anisotropic groove patterns are obtained via enzymatic polymerization. The results show that the cell layer with patterns can be easily transferred to new substrates by lowering the temperature. In addition, multiple cell layers are stacked on the new substrate in a hierarchical manner and the cell layer is easily transplanted onto a subcutaneous region. These results indicate that the evaluated hydrogel can be used as a novel substrate for transfer printing of artificial tissue constructs with controlled structural integrity, which may hold potential to engineer tissue that can closely mimic native tissue architecture.  相似文献   

18.
4D printing has emerged as an important technique for fabricating 3D objects from programmable materials capable of time-dependent reshaping. In the present investigation, novel 4D thermoinks composed of laponite (LAP), an interpenetrating network of poly(N-isopropylacrylamide) (PNIPAAm), and alginate (ALG) are developed for direct printing of shape-morphing structures. This approach consists of the design and fabrication of 3D honeycomb-patterned hydrogel discs self-rolling into tubular constructs under the stimulus of temperature. The shape morphing behavior of hydrogels is due to shear-induced anisotropy generated via 3D printing. The compositionally tunable hydrogel discs can be programmed to exhibit different actuation behaviors at different temperatures. Upon immersion in 12 °C water, singly crosslinked sheets roll up into a tubular construct. When transferred to 42 °C water, the tubes first rapidly unfold and then slightly curve up in the opposite direction. Through a dual photocrosslinking of PNIPAAm, it is possible to inverse temperature-dependent shape morphing and induce self-folding at higher and unrolling at lower temperatures. The extensive self-assembling motion is essential to developing thermal actuators with broad applications in, e.g., soft robotics and active implantology, whereas controllable self-rolling of planar hydrogels is of the highest interest to biomedical engineering as it allows for effective fabrication of hollow tubes.  相似文献   

19.
As one of the most promising smart materials, stimuli‐responsive polymer hydrogels (SPHs) can reversibly change volume or shape in response to external stimuli. They thus have shown promising applications in many fields. While considerable progress of 2D deformation of SPHs has been achieved, the realization of 3D or even more complex deformation still remains a significant challenge. Here, a general strategy towards designing multiresponsive, macroscopically anisotropic SPHs (MA‐SPHs) with the ability of 3D complex deformations is reported. Through a local UV‐reduction of graphene oxide sheets (GOs) with a patterned fashion in the GO‐poly(N‐isopropylacrylamide) (GO‐PNIPAM) composite hydrogel sheet, MA‐SPHs can be achieved after the introduction of a second poly(methylacrylic acid) network in the unreduced part of GO‐PNIPAM hydrogel sheet. The resulting 3D MA‐SPHs can provide remote‐controllable light‐driven, as well as thermo‐, pH‐, and ionic strength‐triggered multiresponsive 3D complex deformations. Approaches in this study may provide new insights in designing and fabricating intelligent soft materials for bioinspired applications.  相似文献   

20.
3D printing of high-strength and antiswelling hydrogel-based load-bearing soft tissue scaffolds with similar geometric shape to natural tissues remains a great challenge owing to insurmountable trade-off between strength and printability. Herein, capitalizing on the concentration-dependent H-bonding-strengthened mechanism of supramolecular poly(N-acryloyl glycinamide) (PNAGA) hydrogel, a self-thickening and self-strengthening strategy, that is, loading the concentrated NAGA monomer into the thermoreversible low-strength PNAGA hydrogel is proposed to directly 3D printing latently H-bonding-reinforced hydrogels. The low-strength PNAGA serves to thicken the concentrated NAGA monomer, affording an appropriate viscosity for thermal-assisted extrusion 3D printing of soft PNAGA hydrogels bearing NAGA monomer and initiator, which are further polymerized to eventually generate high-strength and antiswelling hydrogels, due to the reconstruction of strong H-bonding interactions from postcompensatory PNAGA. Diverse polymer hydrogels can be printed with self-thickened corresponding monomer inks. Further, the self-thickened high-strength PNAGA hydrogel is printed into a meniscus, which is implanted in rabbit's knee as a substitute with in vivo outcome showing an appealing ability to efficiently alleviate the cartilage surface wear. The self-thickening strategy is applicable to directly printing a variety of polymer-hydrogel-based tissue engineering scaffolds without sacrificing mechanical strength, thus circumventing problems of printing high-strength hydrogels and facilitating their application scope.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号