共查询到20条相似文献,搜索用时 15 毫秒
1.
Pei Wang Jiayou Zhang Dou Luo Jingwei Xue Lifu Zhang Houdong Mao Yilin Wang Chongbin Yu Wei Ma Yiwang Chen 《Advanced functional materials》2024,34(38):2402680
Obtaining a well-accurate vertical distribution active layer morphology through the air-printing process is an essential task for achieving efficient scalable large-area organic solar cells (OSCs). In this target, the desired and controllable pseudo planar heterojunction (PPHJ) active layer structure with suitable phase separation is developed by pre-deposited D18-Cl layer under the PM6:BTP-eC9 film via an eco-friendly manufacturing method. The addition of the D18-Cl regulates molecular crystallization and leads to an ideal vertical stratification while simultaneously suppressing voltage loss, optimizing energetic disorder, and carrier management. Impressively, the optimal PPHJ devices perform superior power conversion efficiencies (PCEs) of 19.05% (100 nm), 17.33% (300 nm), and 14.14% (4 cm2) compared to the BHJ devices. Importantly, the PPHJ OSCs also exhibit an impressive extrapolated T80 (the time required to reach 80% of initial PCE) of long-time storage and operational stability, as well as thermal stability. 相似文献
2.
Won‐Ik Jeong Yang Eun Lee Hyun‐Sub Shim Tae‐Min Kim Sei‐Yong Kim Jang‐Joo Kim 《Advanced functional materials》2012,22(14):3089-3094
The bulk‐ionized photoconductivity of C60 is reported as an origin of the bias‐dependent linear change of the photocurrent in copper phthalocyanine (CuPc)/C60 planar heterojunction solar cells, based on the observation of the variation of the bias‐dependent photocurrent on excitation wavelengths and the thickness‐dependent photocurrent of the C60 layer. A theoretical model, which is a combination of the Braun‐Onsager model for the dissociation of excitons at the donor/acceptor interface and the Onsager model for the bulk ionization of excitons in the C60 layer, describes the bias‐dependent photocurrent in the devices very well. The bulk‐ionized photoconductivity of C60 must generally contribute to the photocurrent in organic photovoltaics, since fullerene and fullerene derivatives are widely used in these devices. 相似文献
3.
Kenneth R. Graham Patrick M. Wieruszewski Romain Stalder Michael J. Hartel Jianguo Mei Franky So John R. Reynolds 《Advanced functional materials》2012,22(22):4801-4813
Solvent additives provide an effective means to alter the morphology and thereby improve the performance of organic bulk‐heterojunction photovoltaics, although guidelines for selecting an appropriate solvent additive remain relatively unclear. Here, a family of solvent additives spanning a wide range of Hansen solubility parameters is applied to a molecular bulk‐heterojunction system consisting of an isoindigo and thiophene containing oligomer as the electron donor and [6,6]‐phenyl‐C61‐butyric acid methyl ester (PC61BM) as the electron acceptor. Hansen solubility parameters are calculated using the group contribution method and compared with the measured solubilities for use as a screening method in solvent additive selection. The additives are shown to alter the morphologies in a semipredictable manner, with the poorer solvents generally resulting in decreased domain sizes, increased hole mobilities, and improved photovoltaic performance. The additives with larger hydrogen bonding parameters, namely triethylene glycol (TEG) and N‐methyl‐2‐pyrrolidone (NMP), are demonstrated to increase the open circuit voltage by ~0.2 V. Combining a solvent additive observed to increase short circuit current, poly(dimethylsiloxane), with TEG results in an increase in power conversion efficiency from 1.4 to 3.3%. 相似文献
4.
Zhi Xing Xiangchuan Meng Rui Sun Ting Hu Zengqi Huang Jie Min Xiaotian Hu Yiwang Chen 《Advanced functional materials》2020,30(21)
Regarded as a critical step in commercial applications, scalable printing technology has become a research frontier in the field of organic solar cells. However, inevitable efficiency loss always occurs in the lab‐to‐manufacturing translation due to the different fabrication processes. In fact, the decline of photovoltaic performance is mainly related to voltage loss, which is mainly affected by the diversity of phase separation morphology and the chemical structures of photoactive materials. Fullerene derivative indene‐C60 bisadduct (ICBA) is introduced into a PBDB‐T‐2F:IT‐4F system to control the active layer morphology during blade‐coating process. Accordingly, as a symmetrical fullerene derivative, ICBA can regulate the crystallization tendency and molecular packing orientation and suppress charge carrier recombination. This ternary strategy overcomes the morphology issues caused by weaker shear impulse in blade‐coating process. Benefiting from the reduced nonradiative recombination loss, 1.05 cm2 devices are fabricated by blade coating with a power conversion efficiency of 13.70%. This approach provides an effective support for recovering the voltage loss during scalable printing approaches. 相似文献
5.
V. Shrotriya G. Li Y. Yao T. Moriarty K. Emery Y. Yang 《Advanced functional materials》2006,16(15):2016-2023
Methods to accurately measure the current–voltage characteristics of organic solar cells under standard reporting conditions are presented. Four types of organic test cells and two types of silicon reference cells (unfiltered and with a KG5 color filter) are selected to calculate spectral‐mismatch factors for different test‐cell/reference‐cell combinations. The test devices include both polymer/fullerene‐based bulk‐heterojunction solar cells and small‐molecule‐based heterojunction solar cells. The spectral responsivities of test cells are measured as per American Society for Testing and Materials Standard E1021, and their dependence on light‐bias intensity is reported. The current–voltage curves are measured under 100 mW cm–2 standard AM 1.5 G (AM: air mass) spectrum (International Electrotechnical Commission 69094‐1) generated from a source set with a reference cell and corrected for spectral error. 相似文献
6.
Neha Chaturvedi Nicola Gasparini Daniel Corzo Jules Bertrandie Nimer Wehbe Joel Troughton Derya Baran 《Advanced functional materials》2021,31(14):2009996
Slot-die (SD) coating is used to fabricate fully solution processed organic solar cells (OSCs) based on a blend of high performance donor polymer (PTB7-Th) and a non-fullerene acceptor (IEICO-4F) for stable devices over extended periods of operation. The optimization of a sequential deposition process of transport and active layers, under ambient conditions, enable high efficiency slot-die coated solar cells with remarkable power conversion efficiencies (PCE) > 11.0% to bridge the gap between lab-to-fab. Fully slot-die coated inverted OSCs are demonstrated with efficiencies reaching 11% along with 1 cm2 devices, proving the scalability and reproducibility of the proposed technique. Further, replacing the evaporated Ag electrode with solution processed Ag nanowire (AgNW) electrodes shows the highest light utilization efficiency of 5.26% for semi-transparent OSC with a PCE of 9.07% and average visible transmission of 58%. 相似文献
7.
Liyan Yang Feilong Cai Yu Yan Jinghai Li Dan Liu Andrew J. Pearson Tao Wang 《Advanced functional materials》2017,27(31)
The π‐conjugated organic small molecule 4,4′‐cyclohexylidenebis[N,N‐bis(4‐methylphenyl) benzenamine] (TAPC) has been explored as an efficient hole transport material to replace poly(3,4‐ethylenedio‐xythiophene):poly(styrenesulfonate) (PEDOT:PSS) in the preparation of p‐i‐n type CH3NH3PbI3 perovskite solar cells. Smooth, uniform, and hydrophobic TAPC hole transport layers can be facilely deposited through solution casting without the need for any dopants. The power conversion efficiency of perovskite solar cells shows very weak TAPC layer thickness dependence across the range from 5 to 90 nm. Thermal annealing enables improved hole conductivity and efficient charge transport through an increase in TAPC crystallinity. The perovskite photoactive layer cast onto thermally annealed TAPC displays large grains and low residual PbI2, leading to a high charge recombination resistance. After optimization, a stabilized power conversion efficiency of 18.80% is achieved with marginal hysteresis, much higher than the value of 12.90% achieved using PEDOT:PSS. The TAPC‐based devices also demonstrate superior stability compared with the PEDOT:PSS‐based devices when stored in ambient circumstances, with a relatively high humidity ranging from 50 to 85%. 相似文献
8.
Xiaolin Jiang Xiaodong Wang Yifan Wang Guangliu Ran Wenlong Liu Hao Lu Hongxiang Li Nan Wei Zhengdong Wei Yi Lin Zaifei Ma Yahui Liu Wenkai Zhang Xinjun Xu Zhishan Bo 《Advanced functional materials》2024,34(44):2406744
Reducing non-radiative energy loss (∆Enr) is critical for enhancing the photovoltaic performance of organic solar cells (OSCs). To achieve this, a small molecular donor, LJ1, is introduced as the third component in the host system D: A system (D18: BTP-eC9-4F). The cascade-like energy level alignment of D18, LJ1, and BTP-eC9-4F facilitates efficient charge transfer. LJ1's good solubility in the processing solvent and high miscibility with BTP-eC9-4F delay the precipitation of BTP-eC9-4F, leading to improved phase morphology in blend films. Additionally, LJ1 increases spacing between the polymer donor (PD) and the small molecule acceptor (SMA), optimizing blend film morphology and reducing non-radiative energy loss in OSCs. Ternary OSCs based on D18:LJ1:BTP-eC9-4F achieve a power conversion efficiency (PCE) of 19.43% with reduced ∆Enr. Notably, the ternary device using D18:LJ1:L8-BO attains an outstanding PCE of 19.78%, which is one of the highest device efficiency for ternary OSC. The work highlights the effectiveness of the ternary blend strategy in enhancing OSC performance while minimizing ∆Enr. 相似文献
9.
Xinkang Wang Lifu Zhang Lei Hu Zijun Xie Houdong Mao Licheng Tan Youdi Zhang Yiwang Chen 《Advanced functional materials》2021,31(33):2102291
Acquiring precision adjustable morphology of the blend films to improve the efficiency of charge separation and collection is a constant goal of organic solar cells (OSCs). Here, the above problem is improved by synergistically combining the sequential deposition (SD) method and the additive general strategy. By adding one additive 1,10-decanediol (DDO) into PM6 and another 1-chloronaphthalene (CN) into Y6, the molecule orientation of PM6 and the crystallite texture of the Y6 all become order. During the SD processing, a vertical phase separation OSCs device is formed where the donor enrichment at the anode and acceptor enrichment at the cathode. In comparison, the SD OSCs device with only CN additive still displays the bulk-heterojunction morphology similar to PM6:Y6 blend film. The morphology with vertical phase distribution can not only inhibit charge recombination but also facilitate charge collection, finally enhancing the fill factor (FF) and photocurrent in binary additives SD-type OSCs. As a result, the binary additives SD-type OSCs with blend film PM6 + DDO/Y6 + CN exhibit a high FF of 77.45%, enabling a power conversion efficiency as high as 16.93%. This work reveals a simple but effective approach for boosting high-efficiency OSCs with ideal morphologies and demonstrates that the additive is a promising processing alternative. 相似文献
10.
Zhao Li Sai‐Wing Tsang Xiaomei Du Ludmila Scoles Gilles Robertson Yanguang Zhang Floyd Toll Ye Tao Jianping Lu Jianfu Ding 《Advanced functional materials》2011,21(17):3331-3336
A series of alternating copolymers of cyclopenta[2,1‐b;3,4‐b′]dithiophene (CPDT) and thieno[3,4‐c]pyrrole‐4,6‐dione (TPD) have been prepared and characterized for polymer solar cell (PSC) applications. Different alkyl side chains, including butyl (Bu), hexyl (He), octyl (Oc), and 2‐ethylhexyl (EH), are introduced to the TPD unit in order to adjust the packing of the polymer chain in the solid state, while the hexyl side chain on the CPDT unit remains unchanged to simplify discussion. The polymers in this series have a simple main chain structure and can be synthesized easily, have a narrow band gap and a broad light absorption. The different alkyl chains on the TPD unit not only significantly influence the solubility and chain packing, but also fine tune the energy levels of the polymers. The polymers with Oc or EH group have lower HOMO (highest occupied molecular orbital) and LUMO (lowest unoccupied molecular orbital) energy levels, resulting higher open circuit voltages (Voc) of the PSC devices. Power conversion efficiencies (PCEs) up to 5.5% and 6.4% are obtained from the devices of the Oc substituted polymer (PCPDTTPD‐Oc) with PC61BM and PC71BM, respectively. This side chain effect on the PSC performance is related to the formation of a fine bulk heterojunction structure of polymer and PCBM domains, as observed with atomic force microscopy. 相似文献
11.
12.
Nonfullerene acceptors have recently drawn considerable attention in bulk heterojunction organic solar cells (OSCs). The power conversion efficiency (PCE) over 14% is achieved in single‐junction fullerene‐free OSCs, which has surpassed that of fullerene‐based counterparts. For future commercial applications, however, a high and stable PCE > 15% is required, which entails rational material design and device optimization. In this context, three approaches are generally utilized—the synthesis of novel nonfullerene acceptors and the selection of suitable polymer donors to pair with them, the tandem or multijunction device architecture, and the ternary blend strategy. Compared to the former two methods, the ternary strategy allows to employ the existing photovoltaic materials and the single‐junction device. Therefore, an exploration of nonfullerene acceptor–based ternary blend OSCs (NFTSCs) has shown unprecedented progress since 2016. This review summarizes and classifies the photovoltaic materials utilized in NFTSCs, aiming to not only exhibit the recent development of NFTSCs but also elucidate the correlation among donor/acceptor materials, film morphology, transport dynamics, and device fabrication toward high‐efficiency OSCs. Lastly, the above key advances are highlighted along with the existing issues and insights into the viable path for the further research thrusts are offered. 相似文献
13.
Wei Song Kuibao Yu Erjun Zhou Lin Xie Ling Hong Jinfeng Ge Jinsheng Zhang Xiaoli Zhang Ruixiang Peng Ziyi Ge 《Advanced functional materials》2021,31(30):2102694
Ultraflexible and ultra-lightweight organic solar cells (OSCs) have attracted great attention in terms of power supply in wearable electronic systems. Here, ultrathin and ultra-lightweight OSCs, with a total thickness of less than 3 µm, with excellent mechanical properties in terms of their flexibility and ability to be stretched are demonstrated. A stabilized power conversion efficiency (PCE) of 15.5% and unprecedented power-per-weight of 32.07 W g−1 at a weight of 4.83 g m−2 is achieved, which represents one of the best-performing OSCs based on ultrathin foils substrate reported to date. The ternary strategy introduces the third component of amorphous conformation of the PC71BM molecule, which can slightly reduce crystallization and aggregates without decreasing the electron mobility, thereby reducing rigidity and brittleness of the active layer. The increase in the ductility of the active layer significantly improves the mechanical flexibility of the device, resulting in over 90% retention in the PCE after 200 stretching–compression cycles. In addition, the ternary device exhibits excellent stability when stored in a N2-filled glove box, resulting in the PCE retaining over 95% of its initial efficiency even after 1000 h. This ultraflexible and ultra-lightweight photovoltaic foils constitute a major step toward the integration of power supply into malleable electronic textiles. 相似文献
14.
15.
Jianqiang Qin Linkai Lan Shanshan Chen Feinan Huang Huanrong Shi Wenjie Chen Haibo Xia Kuan Sun Changduk Yang 《Advanced functional materials》2020,30(36)
Flexible and stretchable organic solar cells (OSCs) have attracted enormous attention due to their potential applications in wearable and portable devices. To achieve flexibility and stretchability, many efforts have been made with regard to mechanically robust electrodes, interface layers, and photoactive semiconductors. This has greatly improved the performance of the devices. State‐of‐the‐art flexible and stretchable OSCs have achieved a power conversion efficiency of 15.21% (16.55% for tandem flexible devices) and 13%, respectively. Here, the recent progress of flexible and stretchable OSCs in terms of their components and processing methods are summarized and discussed. The future challenges and perspectives for flexible and stretchable OSCs are also presented. 相似文献
16.
This article aims to review the recent progress and future aspects of organic solar cells (OSCs). Different device designs proposed for efficient light harvesting and their advancements have been discussed. We have discussed various parameters limiting their efficiency and their possible solutions. Special attention has been paid to understand the device physics and its fundamental facets. Open circuit voltage (Voc) is an important parameter in the determination of their efficiency, but the picture behind the real origin of Voc is not very much clear; therefore, this issue has been discussed in detail. Short lifetime is another important issue; therefore, recent progress in stability and related issues has also been discussed. The progress in roll to roll (R2R) processing and demonstration for large‐area OSCs has been paid particular attention. The areas, where further advances will help in the commercial realization of this technology, have also been discussed. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
17.
Bernhard Ecker Jairo Cesar Nolasco Josep Pallarés Lluis Francesc Marsal Jörg Posdorfer Jürgen Parisi Elizabeth von Hauff 《Advanced functional materials》2011,21(14):2705-2711
The influence of the hole transport layer on device stability in polymer:fullerene bulk‐heterojunction solar cells is reported. Three different hole transport layers varying in composition, dispersion solvent, electrical conductivity, and work function were used in these studies. Two water‐based hole transport layers, poly(3,4‐ethylenedioxythiophene):poly(styrene sulfonate) and polyaniline:poly(styrene sulfonate), and one isopropyl alcohol‐based polyaniline:poly(styrene sulfonate) transport layer were investigated. Solar cells with the different hole transport layers were fabricated and degraded under illumination. Current–voltage, capacitance–voltage, and capacitance–frequency data were collected at light intensities of 16, 30, 48, 80, and 100 mW cm?2 over a period of 7 h. Device performance and stability were compared between nonencapsulated and encapsulated samples to gain understanding about degradation effects related to oxygen and water as well as degradation mechanisms related to the intrinsic instability of the solar cell materials and interfaces. It is demonstrated that the properties of the hole transport layer can have a significant impact on the stability of organic solar cells. 相似文献
18.
19.
Lichen Zhao Deying Luo Jiang Wu Qin Hu Wei Zhang Ke Chen Tanghao Liu Yi Liu Yifei Zhang Feng Liu Thomas P. Russell Henry J. Snaith Rui Zhu Qihuang Gong 《Advanced functional materials》2016,26(20):3508-3514
Organic–inorganic lead halide perovskites are emerging materials for the next‐generation photovoltaics. Lead halides are the most commonly used lead precursors for perovskite active layers. Recently, lead acetate (Pb(Ac)2) has shown its superiority as the potential replacement for traditional lead halides. Here, we demonstrate a strategy to improve the efficiency for the perovskite solar cell based on lead acetate precursor. We utilized methylammonium bromide as an additive in the Pb(Ac)2 and methylammonium iodide precursor solution, resulting in uniform, compact and pinhole‐free perovskite films. We observed enhanced charge carrier extraction between the perovskite layer and charge collection layers and delivered a champion power conversion efficiency of 18.3% with a stabilized output efficiency of 17.6% at the maximum power point. The optimized devices also exhibited negligible current density–voltage (J–V) hysteresis under the scanning conditions. 相似文献
20.
Chenyang Zhang Jing Li Wanyuan Deng Junpeng Dai Jifa Yu Guanghao Lu Hanlin Hu Kai Wang 《Advanced functional materials》2023,33(30):2301108
Ternary organic solar cells (OSCs) represent an efficient and facile strategy to further boost the device performance. However, the selection criteria and rational design of the third guest small molecule (SM) material still remain less understood. In this study, two new SM donor isomers, with α-chlorinated thiophene (αBTCl) and β-chlorinated thiophene (βBTCl) as side chains, are systematically designed, synthesized and incorporated as a third component in PM6:L8-BO binary blends. It is noticed that introducing the SM donors guest has extended the absorption of photo-active layer, induced desired component distribution vertically with enhanced crystallinity and reduced recombination process, leading to increased short-circuit current (JSC) and improved fill factor. Moreover, due to the synergetic suppressed nonradiative loss and preferable morphology, the ternary OSCs feature improves open-circuit voltage (VOC). Consequently, an impressive champion power conversion efficiency of 18.96% and 18.55% is achieved by αBTCl-based and βBTCl-based ternary OSCs, respectively. Furthermore, a record efficiency of 17.46% is obtained with a 330 nm thickness of αBTCl-based ternary OSCs. This study demonstrates that molecular isomerization can be a promising design approach for SM donors to construct high-performance ternary OSCs with simultaneous enhancement of all photovoltaic parameters. 相似文献