首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tumor hypoxia and chemoresistance are long‐lasting challenges in clinical cancer treatments resulting in treatment failures and low patient survival rates. Application of phototherapies to treat deep tissue‐buried tumors has been hampered by the lack of near infrared photosensitizers, and consumption of tissue oxygen, worsening the tumor hypoxia problem. Herein, an unprecedented theranostic lanthanum hexaboride‐based nanodrug is engineered to act as bimodal computed tomographic/magnetic resonance imaging contrast agents, absorb long near infrared (NIR) light in the biological window IIb (1500–1700 nm), generate hydroxyl radicals without using oxygen, and destroy drug‐resistant NCI‐H23 lung tumors completely, leading to an amazingly long average half‐life of 180 days, far exceeding than those of doxorubicin‐treated (21 days) and untreated mice groups (13 days). This work pioneers the field of photodynamic therapy in conquering hypoxia and chemodrug resistance problems for NIR‐IIb oxygen‐independent cancer treatments.  相似文献   

2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
Biodegradable, spectrally tunable plasmon resonant nanocapsules are created via the deposition of gold onto the surface of 100 nm diameter thermosensitive liposomes. These nanocapsules exhibit selective release of encapsulated contents upon illumination with light of a wavelength matching their distinct resonance bands. In this study, 760 and 1210 nm laser illumination elicits complete release from gold‐coated liposomes with a corresponding resonance, while causing minimal release from liposomes with an unmatching resonance. Spectrally selective release is accomplished through the use of multiple, low‐intensity laser pulses delivered over a period of minutes, ensuring that illumination affects the gold‐coated liposomes without heating the surrounding media. The use of pulsed illumination to achieve spectral selectivity is validated experimentally and through modeling of the heat equation. The result of this illumination scheme for selective release using multiple wavelengths of light is a biologically safe mechanism for realizing drug delivery, microfluidic, and sensor applications.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号