首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Filled skutterudites are prospective intermediate temperature materials for␣thermoelectric power generation. CoSb3-based n-type filled skutterudites have good electrical transport properties with power factor values over 40 μW/cm K2 at elevated temperatures. Filling multiple fillers into the crystallographic voids of skutterudites would help scatter a broad range of lattice phonons, thus resulting in lower lattice thermal conductivity values. We report the thermoelectric properties of n-type multiple-filled skutterudites between 5 K and 800 K. The combination of different fillers inside the voids of the skutterudite structure shows enhanced phonon scattering, and consequently a strong suppression of the lattice thermal conductivity. Very good power factor values are achieved in multiple-filled skutterudite compared with single-element-filled materials. The dimensionless thermoelectric figure of merit for n-type filled skutterudites is improved through multiple-filling in a wide temperature range.  相似文献   

2.
We present an investigation of electronic structures and electrical transport properties of some filled CoSb3 skutterudites by combining ab initio projected augmented plane-wave calculations and Boltzmann transport theory with electron group velocity evaluated by the momentum matrix method. The systems are studied in a 2 × 2 × 2 supercell of Co4Sb12 to reveal the effects induced by different filler atoms and their filling fractions. The temperature dependences of the Seebeck coefficient and power factor are studied, and they are in good agreement with experimental data. Our results reveal an optimal filling fraction for n-type filled CoSb3 skutterudites and related compounds for achieving the highest power factor values.  相似文献   

3.
In this study, we investigated the impact of the Ce filling fraction on the thermoelectric properties of p-type filled skutterudites Ce y Fe3CoSb12 (y = 0.6 to 1.0). The electrical conductivity decreases gradually with increasing y, while the Seebeck coefficient displays an opposite variation tendency, consistent with the expected electron donor role of the Ce filler in this compound. The overall power factors are invariable among all the samples. Alteration of the Ce filling fraction exerts little influence on the phonon transport, but the total thermal conductivity markedly declined with increasing y due to the reduced contribution to heat transfer from carriers. As a consequence, the maximum thermoelectric figure of merit ZT reaches ~0.8 for the sample with y = 0.9, comparable to that of pure Fe-based skutterudite CeFe4Sb12; more importantly, the former possesses a much larger average ZT between 300 K and 800 K than the latter, showing superior potential for use in intermediate-temperature thermoelectric power generation applications. Further enhancement of ZT in p-type Fe3CoSb12-based skutterudites could be realized via nanostructuring or a multiple-filling approach.  相似文献   

4.
Double-filled skutterudites In x Pr y Co4Sb12, which are currently being investigated for potential applications as thermoelectric materials, have been successfully prepared by inductive melting and annealing. Our results showed that In and Pr double filling effectively improves both electrical conductivity and Seebeck coefficient compared with pristine or single-filled CoSb3, giving rise to a respectable power factor. The largest power factor, 2.33 m Wm?1 K?2, was achieved at 609 K for In0.05Pr0.05Co4Sb12; this value is approximately three times that for In x Co4Sb12 (x ≤ 0.3) skutterudites. These results imply that In and Pr double filling are better than In single filling for efficient improvement of the thermoelectric properties of CoSb3 skutterudite.  相似文献   

5.
Because of their good electrical transport properties, skutterudites have been widely studied as potential next-generation thermoelectric (TE) materials. One of the main obstacles to further improving their thermoelectric performance has been reducing their relatively high thermal conductivity. To some extent, this hindrance has been partially resolved by filling the voids found in the skutterudite structure with so-called “rattling” atoms. It has been predicted that reducing the dimensionality in a TE material would have a positive effect in enhancing its thermoelectric properties, for example increasing the thermopower and reducing the thermal conductivity. Introducing nanoparticles into the skutterudite materials could therefore have favorable effects on their electrical properties and should also reduce lattice thermal conductivity by introducing extra scattering centers throughout the sample. Nanoparticles may also be used in conjunction with void filling for further reduction of the thermal conductivity of skutterudites. Cobalt triantimonide (CoSb3) samples with different amounts of embedded nanoparticles have been grown, and the electrical and thermal transport properties for these composites have been measured from 10 K to 650 K. The synthetic techniques and electrical and thermal transport data are discussed in this paper.  相似文献   

6.
The thermoelectric properties of indium (In) and lutetium (Lu) double-filled skutterudites In x Lu y Co4Sb12 prepared by high-pressure synthesis were investigated in detail from 4 K to 365 K. Our results indicate that In and Lu double filling can remarkably reduce the thermal conductivity, and substantially improve the thermoelectric performance. A thermoelectric figure of merit of ZT = 0.27 for In0.13Lu0.05Co4.02Sb12 was achieved at 365 K, being larger by one order of magnitude than that for CoSb3. It is thought that the large difference in resonance frequencies of the In and Lu elements broadens the range of normal phonon scattering in the multifilled skutterudites, helping to achieve an even lower lattice thermal conductivity. This investigation suggests that an effective way to improve the thermoelectric performance of skutterudite materials is to use In and Lu double filling.  相似文献   

7.
Bulk skutterudites, such as cobalt triantimonide (CoSb3) are promising inorganic materials for thermoelectric power generation at high temperatures. Generally, bulk CoSb3 is synthesized by high temperature solid state reactions. Herein, we demonstrate the low temperature solution phase synthesis of p-type nanocrystalline CoSb3 and Ba-filled CoSb3. Increase in the temperature dependent Seebeck coefficient with simultaneous increase in temperature dependent electrical conductivity has been observed in the present nanocrystalline samples, which is unusual in the case of bulk CoSb3. Efficient phonon scattering by nanoscale grain boundaries and the additional phonon damping due to the rattling of Ba in the void of nanocrystalline CoSb3 give rise to low thermal conductivity, which results in improved thermoelectric performance in nanocrystalline p-type Ba0.048CoSb3.  相似文献   

8.
n-Type In-filled CoSb3 is a known skutterudite compound that has shown promising thermoelectric (TE) properties resulting in high dimensionless figure of merit values at elevated temperatures. Use in various waste heat recovery applications will require survival and operation after exposure to harsh thermal cycling environments. This research focused on uncovering the thermal cycling effects on TE properties of n-type In0.2Co4Sb12 and In0.2Ce0.15Co4Sb12 skutterudite compositions as well as quantifying their temperature-dependent structural properties (elastic modulus, shear modulus, and Poisson??s ratio). It was observed that the Seebeck coefficient and resistivity increased only slightly in the double-filled In,Ce skutterudite materials upon thermal cycling. In the In-filled skutterudites the Seebeck coefficient remained approximately the same on thermal cycling, while the electrical resistivity increased significantly after thermal cycling. Results also show that the thermal conductivity marginally decreases in the case of In-filled skutterudites, whereas the reduction is more pronounced in In,Ce-based skutterudite compounds. The possible reason for this kind of reduction can be attributed to grain pinning effects due to formation of nanoinclusions. High-temperature structural property measurements (i.e., Young??s modulus and shear modulus) are also reported. The results show that these structural properties decrease slowly as temperature increases and that the compounds are structurally stable after numerous (up to 200) thermal cycles.  相似文献   

9.
Bulk multifilled n- and p-type skutterudites with La as the main filler were fabricated using the spark plasma sintering (SPS) method. The thermoelectric properties and thermal stability of these skutterudites were investigated. It was found that the interactions among the filling atoms also play a vital role in reducing the lattice thermal conductivity of the multifilled skutterudites. ZT = 0.76 for p-type La0.8Ba0.01Ga0.1Ti0.1Fe3CoSb12 and ZT = 1.0 for n-type La0.3Ca0.1Al0.1Ga0.1In0.2Co3.75Fe0.25Sb12 skutterudites have been achieved. Furthermore, the differential scanning calorimetry (DSC) results show that there is no skutterudite phase decomposition till 750°C for the La0.8Ba0.01Ga0.1Ti0.1Fe3CoSb12 sample. The thermal stability of the La0.8Ba0.01Ga0.1Ti0.1Fe3CoSb12 skutterudite is greatly improved. Using the developed multifilled skutterudites, the fabricated module with size of 50 mm × 50 mm × 7.6 mm possesses maximum output power of 32 W under the condition of hot/cold sides = 600°C/50°C.  相似文献   

10.
Ca z Co4−x (Fe/Mn) x Sb12 skutterudites were prepared by mechanical alloying and hot pressing. The phases of mechanically alloyed powders were identified as γ-CoSb2 and Sb, but they were transformed to δ-CoSb3 by annealing at 873 K for 100 h. All specimens had a positive Hall coefficient and Seebeck coefficient, indicating p-type conduction by holes as majority carriers. For the binary CoSb3, the electrical conductivity behaved like a nondegenerate semiconductor, but Ca-filled and Fe/Mn-doped CoSb3 showed a temperature dependence of a degenerate semiconductor. While the Seebeck coefficient of intrinsic CoSb3 increased with temperature and reached a maximum at 623 K, the Seebeck coefficient increased with increasing temperature for the Ca-filled and Fe/Mn-doped specimens. Relatively low thermal conductivity was obtained because fine particles prepared by mechanical alloying lead to phonon scattering. The thermal conductivity was reduced by Ca filling and Fe/Mn doping. The electronic thermal conductivity was increased by Fe/Mn doping, but the lattice thermal conductivity was decreased by Ca filling. Reasonable thermoelectric figure-of-merit values were obtained for Ca-filled Co-rich p-type skutterudites.  相似文献   

11.
The oxidation behavior of filled skutterudites Yb y Co4Sb12 was investigated. The overall oxidation of Yb y Co4Sb12 consists of two stages. In the first stage, densified oxide layers form on the surface gradually due to the reaction between oxygen and skutterudite at high temperature. In the second stage, microcracks evolve in the oxide layers because of mismatch of coefficient of thermal expansion between the oxide layer and skutterudite matrix, which accelerates the oxidation by providing transport paths for both outside oxygen and inside Sb. The overall oxidation process can be described through the repetitive cycle: dense layer formation → stress release → microcrack formation → self-repair → dense layer formation. The oxidation activation energy of filled skutterudites determined using thermogravimetry method with multi-heating rates is lower than that of unfilled CoSb3. Moreover, it was found that, with increasing Yb filling fraction, the oxidation activation energy decreases monotonically. Our results suggest that protection against oxidation is necessary for application of filled skutterudites.  相似文献   

12.
The thermoelectric properties of In-filled and Fe-doped CoSb3 (In z Co4−x - Fe x Sb12) skutterudites prepared by encapsulated induction melting were examined. A single δ-phase was obtained successfully by subsequent annealing at 823 K for 120 h. The Hall and Seebeck coefficients of the In z Co4−x Fe x Sb12 samples had positive signs, indicating p-type conduction. The electrical conductivity was increased by Fe doping, and the thermal conductivity was decreased by In filling due to phonon scattering. The thermoelectric properties were improved by In filling and Fe doping, and were closely related to the optimum carrier concentration and phonon scattering.  相似文献   

13.
The high concentration of grain boundaries provided by nanostructuring is expected to lower the thermal conductivity of thermoelectric materials, which favors an increase in their thermoelectric figure‐of‐merit, ZT. A novel chemical alloying method has been used for the synthesis of nanoengineered‐skutterudite CoSb3. The CoSb3 powders were annealed for different durations to obtain a set of samples with different particle sizes. The samples were then compacted into pellets by uniaxial pressing under various conditions and used for the thermoelectric characterization. The transport properties were investigated by measuring the Seebeck coefficient and the electrical and thermal conductivities in the temperature range 300 K to 650 K. A substantial reduction in the thermal conductivity of CoSb3 was observed with decreasing grain size in the nanometer region. For an average grain size of 140 nm, the thermal conductivity was reduced by almost an order of magnitude compared to that of a single crystalline or highly annealed polycrystalline material. The highest ZT value obtained was 0.17 at 611 K for a sample with an average grain size of 220 nm. The observed decrease in the thermal conductivity with decreasing grain size is quantified using a model that combines the macroscopic effective medium approaches with the concept of the Kapitza resistance. The compacted samples exhibit Kapitza resistances typical of semiconductors and comparable to those of Si–Ge alloys.  相似文献   

14.
CoSb3-based skutterudites with substitution of Ni atoms for Co, and substitution of Te and Se atoms for Sb were successfully prepared by solid-state reaction and spark plasma sintering. According to x-ray diffraction analysis the major phase of all the samples had a CoSb3-type structure, although back-scattered electron images showed that small amounts of impurity phases were present in all the samples. The temperature-dependent transport properties were characterized over the temperature range 300–800 K for all the samples. It was found that appropriate substitution with Ni, Te, and Se effectively improved the power factor and reduced the thermal conductivity. As a result, Ni, Te, and Se-tri-doped CoSb3 materials with enhanced thermoelectric figures of merit, ZT, were obtained. The highest ZT was greater than 1.1 at high temperature.  相似文献   

15.
CoSb3 skutterudites multiply doped with Ge, Te, and S were synthesized by solid-state reaction and spark plasma sintering. x-Ray diffraction studies revealed that Ge, Te, and S entered the lattice of the CoSb3 compounds, and while Te increased the lattice volume, Ge and S decreased it. Compared with the undoped and single-doped CoSb3 compounds, the thermal conductivity and lattice thermal conductivity are significantly suppressed due to greatly increased point defect scattering. It is found that S is more effective for decreasing the lattice thermal conductivity than Te and Ge. The highest thermoelectric figure of merit, ZT, exceeds 1.1 for the Co4Sb11.25Ge0.05Te0.63S0.07 compound at 800 K.  相似文献   

16.
The thermal stability of skutterudite-based thermoelectric modules is of great importance since they are used at elevated temperatures. This study examined the high-temperature stability of In-filled and Fe-doped skutterudites (In0.25Co3FeSb12) as a function of the following aging variables: atmosphere (vacuum and air), temperature, and time. Sb-based oxides are produced preferentially on exposure to high temperatures in air. The oxide layer produced during aging at 823?K in air was much thinner than that produced during aging at 723?K in air. The formation of InSb is believed to retard the oxidation of Sb and act as an obstacle to the growth of the oxide layer. The CoSb3-based skutterudites were stable at 823?K if they were not exposed to air, and InSb phases were not produced in the In0.25Co3FeSb12 skutterudites.  相似文献   

17.
n-Type CoSb2.875−x Ge0.125Te x (x = 0.125 to 0.275) compounds with different Te contents have been synthesized by a melt–quench–anneal–spark plasma sintering method, and the effects of Te content on the structure and thermoelectric properties have been investigated. The results show that all specimens exhibited n-type conduction characteristics. The solubility limit of Te in CoSb2.875−x Ge0.125Te x is found to be x = 0.25. The solubility of Te in CoSb3 is increased through charge compensation of the element Ge. The room-temperature carrier concentration N p of CoSb2.875−x Ge0.125Te x skutterudites increases with increasing Te content, and the compounds possess high power factors. The maximum power factor of 3.89 × 10−3 W m−1 K−2 was obtained at 720 K for the CoSb2.625Ge0.125Te0.25 compound. The thermal conductivity decreases dramatically with increasing Te content due to strong point defect scattering. The maximum value of the thermoelectric figure of merit ZT = 1.03 was obtained at 800 K for CoSb2.625Ge0.125Te0.25, benefiting from a lower thermal conductivity and a higher power factor. The figure of merit is competitive with values reported for single-filled skutterudites.  相似文献   

18.
In the search for desirable materials for use in thermoelectric generators, CoSb3-based skutterudites have stimulated much scientific interest due to their high performance capabilities even at high temperatures. In this work, we tested the electrical power-generation characteristics of CoSb3-based unicouples. We manufactured power-generation unicouples using n-type In0.25Co3.95Ni0.05Sb12 and p-type In0.25Co3.0Fe1.0Sb12 legs. The dimensions of the thermoelectric legs were 10?mm in diameter and 10?mm in height, with Cu sheets and Cu/Mo alloy as the electrode materials. For our unicouples, we evaluated the resistance ratio m?? (=R o/R), which represents the ratio of the load resistance to the internal resistance of the unicouple. From this analysis of the resistance ratio m??, we obtained a considerable amount of information about the loss factors that caused the difference between the measured power output and the theoretical value. Through these analyses of two types of loss factors, we sought to improve the open-circuit voltage and internal resistance of a unicouple with CoSb3/Ti/electrode interfaces. In addition, a long-term durability test of the unicouple at high temperature was performed to test the stability of the thermoelectric materials and of the interface between the electrodes and the thermoelectric legs at the same time.  相似文献   

19.
To find a suitable potential for the interatomic interactions in molecular dynamics (MD) simulations for the study of the mechanical properties of the nanostructured thermoelectric material CoSb3, the advantages and disadvantages of existing potentials for the material are first reviewed and discussed, and then an enhanced potential is proposed in which both bond-stretching and bond-angle distortions are considered. The structural stability and elastic properties of the crystalline CoSb3 model within the developed potential are validated at finite temperature using classic MD tests. Comparison of the mechanical behavior of bulk single-crystal CoSb3, including the stress–strain curve and configuration evolution under tension, shows that the enhanced potential exhibits better reliability than the other potentials. Finally, the significance of the potential and its possible further improvement for broader application are briefly discussed.  相似文献   

20.
Band structure and density of states (DOS) of CoSb3 single-filled by seven kinds of atoms (R0.125Co4Sb12) are calculated by the density functional method. The results for the electronic structures in turn determine the electrical transport and thermal performance. It is found that the band structure of R0.125Co4Sb12 shows no significant changes compared with that of CoSb3, and the results indicate that void filling with a small quantity of R atoms does not change the bond formation in CoSb3. However, the partial DOS reveals that there could be interaction of Sn, Tl, In, and Yb atoms with CoSb3. The results for the electrical transport properties and thermal properties show that Sn, Tl, and In atoms increase the Seebeck coefficient and La, Eu, and Yb atoms are helpful for increasing the electron concentration and decreasing the thermal conductivity further. According to our calculations and Yang’s principle, double-filled CoSb3 with atomic combinations of (In, Ca), (In, Ba), (Sn, Eu), and (Sn, La) may exhibit good thermoelectric performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号