首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
A visible-light-active Ag3PO4/BiPO4 nanocomposite with a p–n heterojunction structure was fabricated via a co-precipitation hydrothermal process using 2-hydroxylethylammonium formate (RTIL) as a room-temperature ionic liquid. The resulting catalysts were characterized by various techniques. The photocatalytic activity of the photocatalysts was evaluated by the photodegradation of phthalocyanine Reactive Blue 21 (RB21) under both visible and UV light irradiations. The results reveal that the heterojunction composite prepared in RTIL noticeably exhibited an improvement in both efficiency and rate of RB21 photodegradation in comparison with pure Ag3PO4 and BiPO4. The enhanced photocatalytic activity of Ag3PO4/BiPO4 heterostructure prepared in RTIL is mainly ascribed to the internal electric field built at the heterojunction interface and efficient charge separation and transfer across the p–n junction. RTIL can also assist in decreasing the crystalline size, orderly distributing the particles, preventing the collapse of pore structures, and losing of composite surface area.  相似文献   

2.
A high-performance photocatalyst of AgI–Ag3PO4/multi-walled carbon nanotubes (MWCNTs) was fabricated by chemical precipitation method using KI, K2HPO4 and AgNO3 in the presence of MWCNTs. Its structure and physical properties were characterized by means of scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), transmission electron microscope (TEM), X-ray diffraction (XRD), UV–vis absorption spectra, X-ray photo-electron spectroscopy (XPS), photoluminescence spectra (PL) and photocurrent techniques. SEM, TEM and EDS analyses verified that AgI–Ag3PO4 is successfully loaded on MWCNTs. AgI–Ag3PO4/MWCNTs possess the absorption edge of red shift and small band gap energy, and could absorb more photons in the visible region. PL and photocurrent analyses illustrated that AgI–Ag3PO4/MWCNTs have the lowest emission peak intensity and the highest photoelectric current, compared with Ag3PO4, AgI and AgI–Ag3PO4. By using the photocatalytic degradation of mixed dyes wastewater of Orange II and ponceau 4R as a model reaction, the photocatalytic efficiencies of Ag3PO4, AgI, AgI–Ag3PO4 and AgI–Ag3PO4/MWCNTs were evaluated. The reaction results showed that AgI–Ag3PO4/MWCNTs have strong photocatalytic activity and excellent chemical stability in repeated and long-term applications. Therefore, the prepared AgI–Ag3PO4/MWCNTs could act as a high-performance catalyst for the photocatalytic degradation of mixed dyes wastewater and also suggested the promising applications.  相似文献   

3.
Highly efficient visible-light-driven AgBr/Ag3PO4 hybrid photocatalysts with different mole ratios of AgBr were prepared via an in-situ anion-exchange method and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), UV–vis diffuse reflectance spectroscopy (DRS) and photoluminescence (PL) technique. Under visible light irradiation (>420 nm), the AgBr/Ag3PO4 photocatalysts displayed the higher photocatalytic activity than pure Ag3PO4 and AgBr for the decolorization of acid orange 7 (AO 7). Among the hybrid photocatalysts, AgBr/Ag3PO4 with 60% of AgBr exhibited the highest photocatalytic activity for the decolorization of AO 7. X-ray photoelectron spectroscopy (XPS) results revealed that AgBr/Ag3PO4 readily transformed to be Ag@AgBr/Ag3PO4 system while the photocatalytic activity of AgBr/Ag3PO4 remained after 5 recycling runs. In addition, the quenching effects of different scavengers displayed that the reactive h+ and O2∙− play the major role in the AO 7 decolorization. The photocatalytic activity enhancement of AgBr/Ag3PO4 hybrids can be ascribed to the efficient separation of electron–hole pairs through a Z-scheme system composed of Ag3PO4, Ag and AgBr, in which Ag nanoparticles act as the charge separation center.  相似文献   

4.
Several novel micro-nano Ag3PO4/ZnFe2O4 with excellent magnetic separation property and photocatalytic performance were successfully synthesized using different organic additives for the first time. In the composite, Ag3PO4 with flower-like, quadrangular prism and flake structures were obtained when the organic additive is hexadecyl trimethyl ammonium bromide (CTAB), sodium diethyldithiocarbamate (DDTC), or DL-malic acid (DLMA), respectively, while the ZnFe2O4 showed uniform spherical structure. From the results of the photocatalytic activity analysis, the Ag3PO4/ZnFe2O4 gained with the organic additive of DDTC showed the highest photocatalytic capability for 2, 4-dichlorophenol (2, 4-DCP) degradation under visible light irradiation compared with those of CTAB and DLMA as the additives. Moreover, the composition of the composite seriously influences the photocatalytic activity, and when the mass ratio of Ag3PO4 and ZnFe2O4 in the Ag3PO4/ZnFe2O4 (DITCH) is 9:1, the apparent photo degradation rate constant of 2, 4-DC is 0.0155 min−1, which is 5.74 times of ZnFe2O4 (0.0027 min−1) and 1.89 times of Ag3PO4 (0.0082 min−1). Finally, the photocatalytic mechanism of Ag3PO4/ZnFe2O4 was discussed based on the heterojunction energy-band theory and Z-Scheme theory in detail.  相似文献   

5.
The g-C3N4 was synthesized by a hydrothermal method and the g-C3N4/Ag3PO4 composites were prepared by a ordinary precipitation method. Microstructures, morphologies and optical properties of the as-prepared samples were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR), UV–vis diffuse reflectance spectroscopy (DRS), transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDS). The results showed that the Ag3PO4 nanoparticles were dispersed on the surface of the flake-like g-C3N4, and the heterojunction was formed on the interface. The g-C3N4/Ag3PO4 (2 wt%) photocatalyst presented the highest photocatalytic activity for organic dye methylene blue (MB) degradation, and its photocurrent intensity was approximately 2 times than that of the pure Ag3PO4. The g-C3N4/Ag3PO4 (2 wt%) photocatalyst also exhibited photocatalytic performance in the decomposition of colorless antibiotic ciprofloxacin (CIP). The capture experiment confirmed that holes acted as the main active species during the photocatalytic reaction.  相似文献   

6.
Ag3POa/AgC1 hybrids have been synthesized via a facile ion-exchange method. The hybrids exhibit an enhanced photocatalytie activity for degradation of rhodamine B (RhB) than the single Ag-3PO_4 or AgCl under a visible light irradiation. Such a behavior might be attributed to the increased number of high active sites and suitable energy band structure. The possible mechanism is also discussed.  相似文献   

7.
The construction of internal electric field is generally considered an effective strategy to enhance photocatalytic performance due to its significant role in charge separation. However, static internal electric field is prone to be saturated either by inner or outer shield effect, and thus its effect on the improvement of photocatalysis can easily vanish. Here, the self‐healing internal electric field is proposed and successfully endowed to a designed helical structural composite microfiber polyvinylidene fluoride/g‐C3N4 (PVDF/g‐C3N4) based on the bioinspired simple harmonic vibration. Importantly, the saturation and recovery of internal electric field are characterized by transient photovoltage and photoluminescence. The results indicate that the internal electric field could be saturated within about 10 min and refreshed with the assistance of rebuilt piezoelectric potential. The lifetime of photogenerated carriers is about 10?4 s and the number of effective carriers is greatly increased in the presence of self‐healing internal electric field. The results provide direct experimental evidence on the role of self‐healing internal electric field in charge transfer behavior. This work represents a new design strategy of photocatalysts, and it may open up new horizons for solving energy shortage and environmental issues.  相似文献   

8.
Novel visible-light-driven Ag3PO4@C3N4PO4 loaded with metal Ag were synthesised via an anion-exchange precipitation method and regenerated by H2O2 and NaNH3HPO4. The obtained Ag/Ag3PO4@C3N4 and regenerated Ag/Ag3PO4@C3N4 were characterised by XRD, XPS, SEM and UV–vis. The XRD and UV–vis results revealed that the crystal structure and light adsorption property of Ag/Ag3PO4@C3N4 were similar to that of regenerated Ag/Ag3PO4@C3N4. The XPS result showed that the metallic Ag0 deposited on the surface of Ag/Ag3PO4@C3N4 and regenerated Ag/Ag3PO4@C3N4. The Ag/Ag3PO4@C3N4 hybrids displayed remarkable photocatalytic activity and stability after regeneration. Compared with pure Ag3PO4 or C3N4, the Ag/Ag3PO4@C3N4 and regenerated Ag/Ag3PO4@C3N4 enhancement in the photodegradation rate towards methyl orange is observed over under visible light irradiation. The enhanced photocatalytic performance was attributed to the synergistic effect between Ag3PO4 and C3N4 and a small amount of Ag0 which suppresses the charge recombination during photocatalytic process. This work could provide new insights into the fabrication of high stability visible photocatalysts and facilitate their practical application in environment issues.  相似文献   

9.
Photoelectrochemical (PEC) water splitting offers a promising strategy for converting solar energy to chemical fuels. Herein, a piezoelectric‐effect–enhanced full‐spectrum photoelectrocatalysis with multilayered coaxial titanium dioxide/barium titanate/silver oxide (TiO2/BTO/Ag2O) nanorod array as the photoanode is reported. The vertically grown nanorods ensure good electron conductivity, which enables fast transport of the photogenerated electrons. Significantly, the insertion of a piezoelectric BaTiO3 (BTO) nanolayer at the p‐type Ag2O and n‐type TiO2 interface created a polar charge‐stabilized electrical field. It maintains a sustainable driving force that attract the holes of TiO2 and the electrons of Ag2O, resulting in greatly increased separation and inhibited recombination of the photogenerated carriers. Furthermore, Ag2O as a narrow bandgap semiconductor has a high ultraviolet–visible–near infrared (UV–vis–NIR) photoelectrocatalytic activity. The TiO2/BTO/Ag2O, after poling, successfully achieves a prominent photocurrent density, as high as 1.8 mA cm?2 at 0.8 V versus Ag/Cl, which is about 2.6 times the TiO2 nanorod photoanode. It is the first time that piezoelectric BaTiO3 is used for tuning the interface of p‐type and n‐type photoelectrocatalyst. With the enhanced light harvesting, efficient photogenerated electron–hole pairs' separation, and rapid charge transfer at the photoanode, an excellent photoelectrocatalytic activity is realized.  相似文献   

10.
Using a wet‐chemical method and without any surfactants or templates, various 3D hierarchical superstructures of Cu2PO4OH were synthesized by simply adjusting the pH. The resulting hierarchical superstructures were characterized using X‐ray diffraction (XRD), field‐emission scanning electron microscopy (FESEM), high resolution‐TEM (HRTEM), Fourier transform infrared spectroscopy (FTIR), Raman, and UV–Vis spectroscopy. With an increase in pH from 2.5 to 7.0, the morphology of Cu2PO4OH varied from microrods to walnut‐shaped microspheres of self‐assembled nanoparticles. A possible mechanism for the formation of the Cu2PO4OH hierarchical superstructures was also proposed. The optical properties of the Cu2PO4OH hierarchical superstructures were strongly related to their morphologies and the size of the assembled crystallites. We further demonstrated the useful photocatalytic activity of these complex structures in the degradation of methylene blue (MB) dye under visible light irradiation (λ > 410 nm). The best photocatalytic performance was achieved by Cu2PO4OH with a walnut‐shaped morphology due to the excellent absorption of visible light as well as a high BET surface area.  相似文献   

11.
High‐performance photocatalysts should have highly crystallized nanocrystals (NCs) with small sizes, high separation efficiency of photogenerated electron–hole pairs, fast transport and consumption of photon‐excited electrons from the surface of catalyst, high adsorption of organic pollutant, and suitable band gap for maximally utilizing sunlight energy. However, the design and synthesis of these versatile structures still remain a big challenge. Here, we report a novel strategy for the synthesis of ultrasmall and highly crystallized graphene–ZnFe2O4 photocatalyst through interface engineering by using interconnected graphene network as barrier for spatially confined growth of ZnFe2O4, as transport channels for photon‐excited electron from the surface of catalyst, as well as the electron reservoir for suppressing the recombination of photogenerated electron–hole pairs. As a result, about 20 nm ZnFe2O4 NCs with highly crystallized (311) plane confined in the graphene network exhibit an excellent visible‐light‐driven photocatalytic activity with an ultrafast degradation rate of 1.924 × 10?7 mol g?1 s?1 for methylene blue, much higher than those of previously reported photocatalysts such as spinel‐based photocatalysts (20 times), TiO2‐based photocatalysts (4 times), and other photocatalysts (4 times). Our strategy can be further extended to fabricate other catalysts and electrode materials for supercapacitors and Li‐ion batteries.  相似文献   

12.
Ag3PO4 microparticles (MPs) were prepared through a facile chemical precipitation route and using silver acetate (AgAc) as metal salt. The effect of annealing temperature (Ta) and time (τa) on the actual photocatalytic (PC) activity of Ag3PO4 MPs is investigated. The optimal annealing parameters are Ta of 400 °C and τa of 90 min. The enhanced PC activity by annealing at 400 °C is ascribed to the increase of electron mobility. Besides, an Ag3PO4 photoelectrode was fabricated through a drop-coating deposition route, which demonstrates a photocurrent density of 80 μA/cm2 and acceptable stability. The n-type conduction behavior of Ag3PO4 is verified by a Mott-Schottky (M-S) plot.  相似文献   

13.
Hybrid quantum dot–graphene photodetectors have recently attracted substantial interest because of their remarkable performance and low power consumption. However, the performance of the device greatly depends on the interfacial states and photogenerated screening field. As a consequence, the sensitivity is limited and the response time is relatively slow. In order to circumvent these challenges, herein, a composite graphene and graphene quantum dot (GQD) photodetector on lead zirconate titanate (Pb(Zr0.2Ti0.8)O3) (PZT) substrates has been designed to form an ultrasensitive photodetector over a wide range of illumination power. Under 325 nm UV light illumination, the device shows sensitivity as high as 4.06 × 109 A W?1, which is 120 times higher than reported sensitivity of the same class of devices. Plant derived GQD has a broad range of absorptivity and is an excellent candidate for harvesting photons generating electron–hole pairs. Intrinsic electric field from PZT substrate separates photogenerated electron–hole pairs as well as provides the built‐in electric field that causes the holes to transfer to the underlying graphene channel. The composite structure of graphene and GQD on PZT substrate therefore produces a simple, stable, and highly sensitive photodetector over a wide range of power with short response time, which shows a way to obtain high‐performance optoelectronic devices.  相似文献   

14.
Au nanorods (NRs) decorated carbon nitride nanotubes (Au NRs/CNNTs) photocatalysts have been designed and prepared by impregnation–annealing approach. Localized surface plasmon resonance (LSPR) peaks of Au NRs can be adjusted by changing the aspect ratios, and the light absorption range of Au NRs/CNNTs is extended to longer wavelength even near‐infrared light. Optimal composition of Pt@Au NR769/CNNT650 has been achieved by adjusting the LSPR peaks of Au NRs and further depositing Pt nanoparticles (NPs), and the photocatalytic H2 evolution rate is 207.0 µmol h?1 (20 mg catalyst). Preliminary LSPR enhancement photocatalytic mechanism is suggested. On one hand, LSPR of Au NRs is beneficial for visible‐light utilization. On the other hand, Pt NPs and Au NRs have a synergetic enhancement effect on photocatalytic H2 evolution of CNNTs, in which the local electromagnetic field can improve the photogenerated carrier separation and direct electron transfer increases the hot electron concentration while Au NRs as the electron channel can well restrain charge recombination, finally Pt as co‐catalyst can boost H+ reduction rate. This work provides a new way to develop efficient photocatalysts for splitting water, which can simultaneously extend light absorption range and facilitate carrier generation, transportation and reduce carrier recombination.  相似文献   

15.
A unique morphology of SrTiO3 nanocubes precipitated on TiO2 nanowires is successfully synthesized in the form of a thin‐film heterojunctioned TiO2/SrTiO3 photocatalyst using facile hydrothermal techniques. The formation mechanisms of the synthesized photocatalysts are meticulously studied and described. Growth of SrTiO3 single crystal nanocubes (≈50 nm in width) on anatase polycrystalline nanowires follows an in situ dissolution‐precipitation pathway. This is consonant with the classic LaMer model. By analyzing the results of field emission scanning electron microscopy (FESEM), field emission transmission electron microscopy (FETEM), X‐ray diffraction (XRD), energy dispersive X‐ray (EDX) spectroscopy, X‐ray photoelectron spectroscopy (XPS), and UV‐vis spectrophotometry, a comprehensive structural and morphological characterization of the photocatalysts is established. FESEM images reveal that the anatase film comprises mainly of nanowires bristles while the tausonite film is primarily made up of nanocube aggregations. In comparison to the respective pristine semiconductor photocatalysts, the heterostructured photocatalyst demonstrates the highest efficiency in photocatalytic splitting of water to produce H2, 4.9 times that of TiO2 and 2.1 times that of SrTiO3. The enhanced photocatalytic efficiency is largely attributed to the efficient separation of photogenerated charges at heterojunctions of the two dissimilar semiconductors, as well as a negative redox potential shift in the Fermi level.  相似文献   

16.
The novel visible light-induced g-C3N4/BiFeO3 composites were successfully synthesized by introducing BiFeO3 into polymeric g-C3N4. The structures and optical properties of composites were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), field-emission transmission electron microscope (TEM), UV–vis diffuse reflection spectroscopy (DRS), respectively. For the degradation of Rhodamine B (RhB), the g-C3N4/BiFeO3 composites exhibited significantly higher visible light photocatalytic activity than that of a single semiconductor. The optimal percentage of doped g-C3N4 was 50%. Both photooxidation and photoreduction processes follow first order kinetics. In addition, the stability of the prepared photocatalyst in the photocatalytic process was also investigated. The enhanced photocatalytic performance could be due to the high separation efficiency of the photogenerated electron–holes pairs. The possible photocatalytic mechanism of g-C3N4/BiFeO3 was proposed to guide the further improvement of their photocatalytic activity.  相似文献   

17.
Anisotropic Ag2S‐edged Au‐triangular nanoprisms (TNPs) are constructed by controlling preferential overgrowth of Ag2S as plasmonic photocatalysts for hydrogen generation. Under visible and near‐infrared light irradiation, Ag2S‐edged Au‐TNPs exhibit almost fourfold higher efficiency (796 µmol h−1 g−1) than those of Ag2S‐covered Au‐TNPs (216 µmol h−1 g−1) and pure Au‐TNPs in hydrogen generation. A single‐particle photoluminescence study demonstrates that the plasmon‐induced hot electrons transfer from Au‐TNPs to Ag2S for hydrogen generation. Finite‐difference‐time‐domain simulations verify that the corners/edges of Au‐TNPs are high‐curvature sites with maximum electric field distributions facilitating hot electron generation and transfer. Therefore, Ag2S‐edged Au‐TNPs are efficient plasmonic photocatalyst with the desired configurations for charge separation boosting hydrogen generation.  相似文献   

18.
Herein, transition metal chalcogenides of pristine cobalt sulfides are rationally designed to act as robust bifunctional photocatalysts for visible‐light‐driven water splitting for the first time. Through moderate solvothermal route, cobalt sulfides are synthesized in situ growth and observed by scanning electron microscope image analysis. Noteworthily, 3D hierarchical cobalt sulfides acting as bifunctional photocatalysts are implemented to catalyze the visible‐light‐driven oxygen evolution reaction and hydrogen evolution reaction. This efficient, earth‐abundant, and nonnoble water splitting catalyst for artificial photosynthesis is thoroughly analyzed by various spectroscopic techniques with the aim of investigating its photocatalytic mechanism under visible‐light illumination. The main catalyst of CoS‐2 exhibits considerable H2 evolution rate of 1196 µmol h?1 g?1 and O2 yield of 63.5%. The efficient activity is attributed to the effective electron transfer between the photosensitizer and catalyst, which is verified by transient absorption experiments. The effective electron transfer between the photosensitizer and catalyst during water oxidation is verified by the dramatic decline of [Ru(bpy)3]3+ concentration in the presence of the catalyst CoS‐2. At the same time, transient absorption experiments support a rapid electron transfers from 3EY* (excited photosensitizer eosin‐Y) to the catalyst CoS‐2 for efficient hydrogen evolution.  相似文献   

19.
Halide perovskite like methylammonium lead iodide perovskite (MAPbI3) with its prominent optoelectronic properties has triggered substantial concerns in photocatalytic H2 evolution. In this work, to attain preferable photocatalytic performance, a MAPbI3/cobalt phosphide (CoP) hybrid heterojunction is constructed by a facile in situ photosynthesis approach. Systematic investigations reveal that the CoP nanoparticle can work as co‐catalyst to not only extract photogenerated electrons effectively from MAPbI3 to improve the photoinduced charge separation, but also facilitate the interfacial catalytic reaction. As a result, the as‐achieved MAPbI3/CoP hybrid displays a superior H2 evolution rate of 785.9 µmol h?1 g?1 in hydroiodic acid solution within 3 h, which is ≈8.0 times higher than that of pristine MAPbI3. Furthermore, the H2 evolution rate of MAPbI3/CoP hybrid can reach 2087.5 µmol h?1 g?1 when the photocatalytic reaction time reaches 27 h. This study employs a facile in situ photosynthesis strategy to deposit the metal phosphide co‐catalyst on halide perovskite nanocrystals to conduct photocatalytic H2 evolution reaction, which may stimulate the intensive investigation of perovskite/co‐catalyst hybrid systems for future photocatalytic applications.  相似文献   

20.
Covalent triazine frameworks (CTF) offer a tunable platform for photocatalytic H2 generation due to their diverse structures, low costs, and precisely tunable electronic structures. However, high exciton binding energy and short lifetimes of photogenerated carriers restrict their application in photocatalytic hydrogen evolution. Herein, a novel phosphorus-incorporated CTF is introduced to construct a chemically bonded PCTF/WO3 (PCTFW) heterostructure with a precise interface electron transfer channel. The phosphorus incorporation is found to dominantly reduce the exciton binding energy and promote the dissociation of singlet and triplet excitons into free charge carriers due to the regulation of electronic structures. High-quality interfacial W N bonds improve the interfacial transfer of photogenerated electrons, thus prolonging the lifetime of photogenerated electrons. Femtosecond transient absorption spectroscopy characterizations and DFT calculations further confirm both phosphorus incorporation and Z-scheme heterojunctions can synergistically boost the in-built electric field and accelerate the migration and separation of photogenerated electrons. The optimized photocatalytic H2-evolution rate of resultant PCTFW is 134.84 µmol h−1 (67.42 mmol h−1g−1), with an apparent quantum efficiency of 37.63% at 420 nm, surpassing many reported CTF-based photocatalysts so far. This work highlights the significance of atom-level interfacial exciton dissociation, and charge transfer and separation in improving photocatalysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号