首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The facile fabrication of thin and foldable self‐healing electronics on a poly(vinyl alcohol)/cellulose nanocrystal (PVA/CNC) composite film is reported. The self‐healing property of the PVA/CNC nanocomposite film can be activated by spraying water on the film surface, via dynamic formation of hydrogen bonding. The self‐healing efficiency of PVA/CNC is influenced by the content of CNC in the film, pH of the spraying solution, and the temperature. Via vacuum filtration and pattern transfer techniques, both a supercapacitor and a temperature sensor are fabricated on the same PVA/CNC film using gold nanosheet (AuNS) and polyaniline/multiwalled nanotube (PANI/MWCNT) electrodes. The fabricated supercapacitor with a gel‐type electrolyte exhibits a high electrochemical performance, and the thermoresistive temperature sensor shows a linear sensitivity with a fast response. Both devices exhibit superior mechanical stability and self‐healing property over 100 repetitive folding and five repetitive healing cycles, respectively, retaining the device performance owing to the percolated network of the conductive materials. This work demonstrates that our paper‐like thin PVA/CNC film‐based self‐healable devices can serve as highly durable and deformable electronics with longevity.  相似文献   

2.
Self‐healable and stretchable energy‐harvesting materials can provide a new avenue for the realization of self‐powered wearable electronics, including electronic skins, whose main materials are required to be robust to and stable under external damage and severe mechanical stresses. However, thermoelectric (TE) materials showing both self‐healing properties and stretchability have not yet been demonstrated despite their great potential to harvest thermal energy in the human body. As most existing TE materials are either mechanically brittle or unrecoverable after being subjected to damage, a novel approach is necessary for designing such materials. Herein, self‐healable and stretchable TE materials based on all‐organic composite system wherein polymer semiconductor nanowires are p‐doped with a molecular dopant and embedded in a thermoplastic elastomer matrix are reported. The polymer nanowires are electrically percolated in the matrix, and the resulting composite materials exhibit good TE performance. The composites also exhibit both excellent self‐healing properties under mild heat and pressure conditions and good stretchability. It is believed that this work can be a cornerstone for the design of self‐healable and stretchable energy‐harvesting materials as it provides useful guidelines for imparting electrical conductivity to insulating thermoplastic elastomers, which typically possess versatile and useful mechanical properties.  相似文献   

3.
Inkjet printing of semiconducting polymers is desirable for realizing low‐cost, large‐area printed electronics. However, sequential inkjet printing methods often suffer from nozzle clogging because the solubility of semiconducting polymers in organic solvents is limited. Here, it is demonstrated that the addition of an insulating polymer to a semiconducting polymer ink greatly enhances the solubility and stability of the ink, leading to the stable ejection of ink droplets. This bicomponent blend comprising a liquid‐crystalline semiconducting copolymer, poly(didodecylquaterthiophene‐alt‐didodecylbithiazole) (PQTBTz‐C12), and an insulating commodity polymer, polystyrene, is extremely useful as a semiconducting layer in organic field‐effect transistors (OFETs), providing fine control over the phase‐separated morphology and structure of the inkjet‐printed film. Tailoring the solubility‐induced phase separation of the two components leads to a bilayer structure consisting of a polystyrene layer on the top and a highly crystalline PQTBTz‐C12 layer on the bottom. The blend film is used as the semiconducting layer in OFETs, reducing the semiconductor content to several tens of pictograms in a single device without degrading the device performance. Furthermore, OFETs based on the PQTBTz‐C12/polystyrene film exhibit much greater environmental and electrical stabilities compared to the films prepared from homo PQTBTz‐C12, mainly due to the self‐encapsulated structure of the blend film.  相似文献   

4.
A specific design for solution‐processed doping of active semiconducting materials would be a powerful strategy in order to improve device performance in flexible and/or printed electronics. Tetrabutylammonium fluoride and tetrabutylammonium hydroxide contain Lewis base anions, F? and OH?, respectively, which are considered as organic dopants for efficient and cost‐effective n‐doping processes both in n‐type organic and nanocarbon‐based semiconductors, such as poly[[N,N′‐bis(2‐octyldodecyl)‐naphthalene‐1,4,5,8‐bis(dicarboximide)‐2,6‐diyl]‐alt‐5,5′‐(2,2′‐bithiophene)] (P(NDI2OD‐T2)) and selectively dispersed semiconducting single‐walled carbon nanotubes by π‐conjugated polymers. The dramatic enhancement of electron transport properties in field‐effect transistors is confirmed by the effective electron transfer from the dopants to the semiconductors as well as controllable onset and threshold voltages, convertible charge‐transport polarity, and simultaneously showing excellent device stabilities under ambient air and bias stress conditions. This simple solution‐processed chemical doping approach could facilitate the understanding of both intrinsic and extrinsic charge transport characteristics in organic semiconductors and nanocarbon‐based materials, and is thus widely applicable for developing high‐performance organic and printed electronics and optoelectronics devices.  相似文献   

5.
Self‐healing triboelectric nanogenerators (TENGs) with flexibility, robustness, and conformability are highly desirable for promising flexible and wearable devices, which can serve as a durable, stable, and renewable power supply, as well as a self‐powered sensor. Herein, an entirely self‐healing, flexible, and tailorable TENG is designed as a wearable sensor to monitor human motion, with infrared radiation from skin to promote self‐healing after being broken based on thermal effect of infrared radiation. Human skin is a natural infrared radiation emitter, providing favorable conditions for the device to function efficiently. The reversible imine bonds and quadruple hydrogen bonding (UPy) moieties are introduced into polymer networks to construct self‐healable electrification layer. UPy‐functionalized multiwalled carbon nanotubes are further incorporated into healable polymer to obtain conductive nanocomposite. Driven by the dynamic bonds, the designed and synthesized materials show excellent intrinsic self‐healing and shape‐tailorable features. Moreover, there is a robust interface bonding in the TENG devices due to the similar healable networks between electrification layer and electrode. The output electric performances of the self‐healable TENG devices can almost restore their original state when the damage of the devices occurs. This work presents a novel strategy for flexible devices, contributing to future sustainable energy and wearable electronics.  相似文献   

6.
The fabrication of self‐healing/healable superhydrophobic films that can conveniently and repeatedly restore the loss of superhydrophobicity caused by severe mechanical damage, such as deep and wide surface scratches, remains challenging. In the present work, conductive superhydrophobic films that are healable by means of an applied voltage or near infrared (NIR) light irradiation are fabricated by depositing a layer of Ag nanoparticles and Ag nanowires (AgNPs‐AgNWs) on a thermally healable polycaprolactone (PCL)/poly(vinyl alcohol) (PVA) composite film, followed by the deposition of 1H,1H,2H,2H‐perfluorodecanethiol. The AgNPs‐AgNWs layer not only provides micro‐ and nanoscaled hierarchical structures in support of superhydrophobicity but also serves as an electrothermal or photothermal heater to enable healing of the underlying PCL/PVA film under the assistance of a low applied voltage or low‐power NIR light irradiation. Because of the strong adhesion between the PCL/PVA film and the AgNPs‐AgNWs layer, the healability of the PCL/PVA film is successfully conveyed to the conductive superhydrophobic layer, which can rapidly and repeatedly restore the loss of superhydrophobicity caused by cuts several hundreds of micrometers wide. The combined electrothermal and superhydrophobic properties endow the healable conductive superhydrophobic films with improved durability and usefulness as self‐cleaning, antiicing, and snow‐removing surfaces.  相似文献   

7.
The semiconductor–electrode interface impacts the function and the performance of (opto)electronic devices. For printed organic electronics the electrode surface is not atomically clean leading to weakly interacting interfaces. As a result, solution‐processed organic ultrathin films on electrodes typically form islands due to dewetting. It has therefore been utterly difficult to achieve homogenous ultrathin conjugated polymer films. This has made the investigation of the correct energetics of the conjugated polymer–electrode interface impossible. Also, this has hampered the development of devices including ultrathin conjugated polymer layers. Here, Langmuir–Shäfer‐manufactured homogenous mono‐ and multilayers of semiconducting polymers on metal electrodes are reported and the energy level bending using photoelectron spectroscopy is tracked. The amorphous films display an abrupt energy level bending that does not extend beyond the first monolayer. These findings provide new insights of the energetics of the polymer–electrode interface and opens up for new high‐performing devices based on ultrathin semiconducting polymers.  相似文献   

8.
It is well known that luminescent conjugated polymers suffer serious loss of photoluminescence quantum yield (PLQY) in the solid state compared to dilute solution. This is due to efficient exciton migration in the solid, which enables the excitons to readily find low energy quenching sites. Here a new method to fabricate solid films with densely packed non‐interacting luminescent polymer chains, which yield very high PLQY and more astonishingly room temperature phosphorescence, is reported. Using water‐soluble conjugated polymers (WSCP) and polymeric surfactants such as poly(vinyl alcohol) (PVA) and poly(vinyl‐pyrrolidone) (PVP), films at 1:1 wt% or higher WSCP are produced and show room temperature phosphorescence; such behavior has never been observed before and clearly shows the very high degree of chain isolation that can be achieved in these hosts. The PVA or PVP not only breaks up WSCP aggregates in solution as an effective surfactant, PVA‐PVA or PVP‐PVP hydrogen bond formation upon drying locks in the isolation of the WSCP, avoiding segregation and yielding long time stability to these polymer/polymer nanomixtures. The method is found to work with a wide variety of WSCPs.  相似文献   

9.
A novel method making use of block copolymer self‐assembly in nematic liquid crystals (LCs) is described for preparing macroscopically oriented nanofibrils of π‐conjugated semiconducting polymers. Upon cooling, a diblock copolymer composed of regioregular poly(3‐hexylthiophene) (P3HT) and a liquid crystalline polymer (LCP) in a block‐selective LC solvent can self‐assemble into oriented nanofibrils exhibiting highly anisotropic absorption and polarized photoluminescence emission. An unusual feature of the nanofibrils is that P3HT chains are oriented along the fibrils' long axis. This general method makes it possible to use LCs as an anisotropic medium to grow oriented nanofibrils of many semiconducting polymers insoluble in LCs.  相似文献   

10.
Ordering of semiconducting polymers in thin films from the nano to microscale is strongly correlated with charge transport properties as well as organic field‐effect transistor performance. This paper reports a method to control nano to microscale ordering of poly{[N,N′‐bis(2‐octyldodecyl)‐naphthalene‐1,4,5,8‐bis(dicarboximide)‐2,6‐diyl]‐alt‐5,5′‐(2,2′‐bithiophene)} (P(NDI2OD‐T2)) thin films by precisely regulating the solidification rate from the metastable state just before crystallization. The proposed simple but effective approach, kinetically controlled crystallization, achieves optimized P(NDI2OD‐T2) films with large polymer domains, long range ordered fibrillar structures, and molecular orientation preferable for electron transport leading to dramatic morphological changes in both polymer domain sizes at the micrometer scale and molecular packing structures at nanoscales. Structural changes significantly increase electron mobilities up to 3.43 ± 0.39 cm2 V?1 s?1 with high reliability, almost two orders of enhancement compared with devices from naturally dried films. Small contact resistance is also obtained for electron injection (0.13 MΩ cm), low activation energy (62.51 meV), and narrow density of states distribution for electron transport in optimized thin films. It is believed that this study offers important insight into the crystallization of conjugated polymers that can be broadly applied to optimize the morphology of semiconducting polymer films for solution processed organic electronic devices.  相似文献   

11.
With the advent of flexible and wearable electronics and sensors, there is an urgent need to develop energy‐harvesting solutions that are compatible with such wearables. However, many of the proposed energy‐harvesting solutions lack the necessary mechanical properties, which make them susceptible to damage by repetitive and continuous mechanical stresses, leading to serious degradation in device performance. Developing new energy materials that possess high deformability and self‐healability is essential to realize self‐powered devices. Herein, a thermoelectric ternary composite is demonstrated that possesses both self‐healing and stretchable properties produced via 3D‐printing method. The ternary composite films provide stable thermoelectric performance during viscoelastic deformation, up to 35% tensile strain. Importantly, after being completely severed by cutting, the composite films autonomously recover their thermoelectric properties with a rapid response time of around one second. Using this self‐healable and solution‐processable composite, 3D‐printed thermoelectric generators are fabricated, which retain above 85% of their initial power output, even after repetitive cutting and self‐healing. This approach represents a significant step in achieving damage‐free and truly wearable 3D‐printed organic thermoelectrics.  相似文献   

12.
Micro‐ and nanostructuring of conjugated polymers are of critical importance in the fabrication of molecular electronic devices as well as photonic and bandgap materials. The present report delineates the single‐step self‐organization of highly ordered structures of functionalized poly(p‐phenylene)s without the aid of either a controlled environment or expensive fabrication methodologies. Microporous films of these polymers, with a honeycomb pattern, were prepared by direct spreading of the dilute polymer solution on various substrates, such as glass, quartz, silicon wafer, indium tin oxide, gold‐coated mica, and water, under ambient conditions. The polymeric film obtained from C12PPPOH comprises highly periodic, defect‐free structures with blue‐light‐emitting properties. It is expected that such microstructured, conjugated polymeric films will have interesting applications in photonic and optoelectronic devices. The ability of the polymer to template the facile micropatterning of nanomaterials gives rise to hybrid films with very good spatial dispersion of the carbon nanotubes.  相似文献   

13.
Power and electronic components that are self‐healable, deformable, transparent, and self‐powered are highly desirable for next‐generation energy/electronic/robotic applications. Here, an energy‐harvesting triboelectric nanogenerator (TENG) that combines the above features is demonstrated, which can serve not only as a power source but also as self‐powered electronic skin. This is the first time that both of the triboelectric‐charged layer and electrode of the TENG are intrinsically and autonomously self‐healable at ambient conditions. Additionally, comparing with previous partially healable TENGs, its fast healing time (30 min, 100% efficiency at 900% strain), high transparency (88.6%), and inherent superstretchability (>900%) are much more favorable. It consists of a metal‐coordinated polymer as the triboelectrically charged layer and hydrogen‐bonded ionic gel as the electrode. Even after 500 cutting‐and‐healing cycles or under extreme 900%‐strain, the TENG retains its functionality. The generated electricity can be used directly or stored to power commercial electronics. The TENG is further used as self‐powered tactile‐sensing skin in diverse human–machine interfaces including smart glass, an epidermal controller, and phone panel. This TENG with merits including fast ambient‐condition self‐healing, high transparency, intrinsic stretchability, and energy‐extraction and actively‐sensing abilities, can meet wide application needs ranging from deformable/portable/transparent electronics, smart interfaces, to artificial skins.  相似文献   

14.
Covalent polymer networks (CPNs) are of great technological interest due to their robustness and tunability; however, they are rarely applied as semiconductors in optoelectronic devices due to poor material processability. Herein, a simple, rapid, and powerful approach is reported to prepare CPN thin films based on an in situ thermal azide–alkyne cycloaddition (TAAC) in the absence of catalyst or solvent. The method is demonstrated with perylenediimide and triazine‐based monomers, and affords smooth and homogenous CPN films through solution processing and heat treatment (10 min). Moreover, the site‐specific TAAC realizes semiconducting CPNs without undesired impurities or byproducts, and tunable optoelectronic properties are achieved by varying the reaction temperature, which affects the intermolecular self‐assembly. The obtained CPN films exhibit exceptional solvent resistance and good n‐type semiconducting behavior, which together afford application in a series of multilayer solution‐processed organic photovoltaics, where the presence of CPN films significantly improves the solar energy conversion efficiency to over 8% (7% in control devices) when the CPN is used in a planar‐mixed heterojunction device architecture.  相似文献   

15.
Contact resistance significantly limits the performance of organic field‐effect transistors (OFETs). Positioning interlayers at the metal/organic interface can tune the effective work‐function and reduce contact resistance. Myriad techniques offer interlayer processing onto the metal pads in bottom‐contact OFETs. However, most methods are not suitable for deposition on organic films and incompatible with top‐contact OFET architectures. Here, a simple and versatile methodology is demonstrated for interlayer processing in both p‐ and n‐type devices that is also suitable for top‐contact OFETs. In this approach, judiciously selected interlayer molecules are co‐deposited as additives in the semiconducting polymer active layer. During top contact deposition, the additive molecules migrate from within the bulk film to the organic/metal interface due to additive‐metal interactions. Migration continues until a thin continuous interlayer is completed. Formation of the interlayer is confirmed by X‐ray photoelectron spectroscopy (XPS) and cross‐section scanning transmission electron microscopy (STEM), and its effect on contact resistance by device measurements and transfer line method (TLM) analysis. It is shown that self‐generated interlayers that reduce contact resistance in p‐type devices, increase that of n‐type devices, and vice versa, confirming the role of additives as interlayer materials that modulate the effective work‐function of the organic/metal interface.  相似文献   

16.
Double network (DN) hydrogels with two strong asymmetric networks being chemically linked have demonstrated their excellent mechanical properties as the toughest hydrogels, but chemically linked DN gels often exhibit negligible fatigue resistance and poor self‐healing property due to the irreversible chain breaks in covalent‐linked networks. Here, a new design strategy is proposed and demonstrated to improve both fatigue resistance and self‐healing property of DN gels by introducing a ductile, nonsoft gel with strong hydrophobic interactions as the second network. Based on this design strategy, a new type of fully physically cross‐linked Agar/hydrophobically associated polyacrylamide (HPAAm) DN gels are synthesized by a simple one‐pot method. Agar/HPAAm DN gels exhibit excellent mechanical strength and high toughness, comparable to the reported DN gels. More importantly, because the ductile and tough second network of HPAAm can bear stress and reconstruct network structure, Agar/HPAAm DN gels also demonstrate rapid self‐recovery, remarkable fatigue resistance, and notable self‐healing property without any external stimuli at room temperature. In contrast to the former DN gels in both network structures and underlying association forces, this new design strategy to prepare highly mechanical DN gels provides a new avenue to better understand the fundamental structure‐property relationship of DN hydrogels, thus broadening current hydrogel research and applications.  相似文献   

17.
Healable, adhesive, wearable, and soft human‐motion sensors for ultrasensitive human–machine interaction and healthcare monitoring are successfully assembled from conductive and human‐friendly hybrid hydrogels with reliable self‐healing capability and robust self‐adhesiveness. The conductive, healable, and self‐adhesive hybrid network hydrogels are prepared from the delicate conformal coating of conductive functionalized single‐wall carbon nanotube (FSWCNT) networks by dynamic supramolecular cross‐linking among FSWCNT, biocompatible polyvinyl alcohol, and polydopamine. They exhibit fast self‐healing ability (within 2 s), high self‐healing efficiency (99%), and robust adhesiveness, and can be assembled as healable, adhesive, and soft human‐motion sensors with tunable conducting channels of pores for ions and framework for electrons for real time and accurate detection of both large‐scale and tiny human activities (including bending and relaxing of fingers, walking, chewing, and pulse). Furthermore, the soft human‐motion sensors can be enabled to wirelessly monitor the human activities by coupling to a wireless transmitter. Additionally, the in vitro cytotoxicity results suggest that the hydrogels show no cytotoxicity and can facilitate cell attachment and proliferation. Thus, the healable, adhesive, wearable, and soft human‐motion sensors have promising potential in various wearable, wireless, and soft electronics for human–machine interfaces, human activity monitoring, personal healthcare diagnosis, and therapy.  相似文献   

18.
Printable and flexible electronics attract sustained attention for their low cost, easy scale up, and potential application in wearable and implantable sensors. However, they are susceptible to scratching, rupture, or other damage from bending or stretching due to their “soft” nature compared to their rigid counterparts (Si‐based electronics), leading to loss of functionality. Self‐healing capability is highly desirable for these “soft” electronic devices. Here, a versatile self‐healing polymer blend dielectric is developed with no added salts and it is integrated into organic field transistors (OFETs) as a gate insulator material. This polymer blend exhibits an unusually high thin film capacitance (1400 nF cm?2 at 120 nm thickness and 20–100 Hz). Furthermore, it shows pronounced electrical and mechanical self‐healing behavior, can serve as the gate dielectric for organic semiconductors, and can even induce healing of the conductivity of a layer coated above it together with the process of healing itself. Based on these attractive properties, we developed a self‐healable, low‐voltage operable, printed, and flexible OFET for the first time, showing promise for vapor sensing as well as conventional OFET applications.  相似文献   

19.
A series of new donor–acceptor (D–A)‐type semiconducting conjugated polymers (SCPs), which can form cross‐linked structural and supramolecular assembly films by hydrogen‐bonding, is successfully synthesized. The microstructures of supramolecular assembly films are further investigated by X‐ray diffraction (XRD), high‐ resolution transmission electron microscopy (HRTEM), and variable‐temperature Fourier transform infrared (FT‐IR) absorption spectra. As electronic transmission (ET) materials, the SCPs demonstrate superior properties by means of fabricating electron‐only devices with the configuration of ITO/ET (SCPs)/Ca/Al. According to space‐charge‐limited current (SCLC) measurements, fluorine‐containing SCPs exhibit much smaller threshold voltages and much higher electron mobilities than Alq3. Meanwhile, a significant enhancement for their luminescence properties is verified by the photoluminescence (PL) and electroluminescent (EL) spectra of cross‐linked‐type SCPs, compared to non‐cross‐linked‐type SCPs. The fabricated polymer light‐emitting diodes (PLEDs) with the configuration of ITO/PEDOT:PSS/EML (SCPs)/BCP/LiF/Al are able to emit the color from green to red with moderately low turn‐on voltages. These results suggested that cross‐linked D–A‐type SCP can become a potential candidate as a kind of multifunctional materials applied in the field of optoelectronic devices.  相似文献   

20.
With the advent of the digital era, healable electronic devices are being developed to alleviate the propagation of breakdown in electronics due to the mechanical damage caused by bending, accidental cutting or scratching. Meanwhile, flexible transparent electronics, exhibiting high transmittance and robust flexibility, are drawing enormous research efforts due to their potential applications in various integrated wearable electronics. However, the breakdown of flexible transparent electronics seriously limits their reliability and lifetime. Therefore, transparent healable electronics are desired to tackle these problems, yet most of the healable electronics are not transparent nowadays. The combination of high performance, healability, and transparency into electronics is often mutually exclusive. Herein, after a brief introduction of self‐healing materials, healable electronics, and flexible transparent electronics, the recent progress in the healable electronic devices without transparency is reviewed in detail. Then, healable transparent electronic devices with high transparency, robust portability, and reliable flexibility are summarized. They are drawing great attention owing to their potential application in optical devices as well as smart wearable and integrated optoelectronic devices. Following that, the critical challenges and prospects are highlighted for the development of healable transparent electronic devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号