首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The B4C-ZrB2-SiC ternary composites with super hard and high toughness were obtained by arc melting in argon atmosphere. Microstructures were observed by SEM, and phase compositions were analyzed by XRD. The hardness and fracture toughness of ternary composites are 28 GPa and 4.5 MPa·m1/2. The eutectic mole composition is 0.39B4C-0.25ZrB2-0.36SiC, and the eutectic lamellar microstructure is composed of B4C matrix with the lamellar ZrB2 and SiC grains.  相似文献   

2.
Thermoelectric power (TEP) of two YBa2Cu3O7−δ compounds (with δ=0·17 and 0·21) was measured as a function of quasi-hydrostatic pressure up to 9GPa at 300K on samples with low porosity. In both cases TEP decreases with increasing pressure, at a rate ∼ 0·8 μVK−1/GPa. The data obtained under hydrostatic pressure up to 3 GPa are in good agreement with those under quasi-hydrostatic pressure. The TEP of both compositions is found to decrease linearly at a rate 0·8 μVK−1/GPa above 1·5 GPa.  相似文献   

3.
To explore novel physical phenomena related to strong π−d interaction, we measured the resistivity (ρ) and magnetoresistance of the first organic ferrimagnetic π−d system, (EDT-TTFVO)2FeBr4 under high pressures up to 8 GPa, where EDT-TTFVO denotes ethylenedithiotetrathiafulvalenoquinone-1,3-dithiolemethide. At ambient pressure, ρ(T) exhibits resistivity minimum near Tmin ~ 170 K followed by a gradual increase below it. With increasing pressure, Tmin abruptly decreases till 4 GPa, beyond which it slightly increases. The increase of Tmin above 4 GPa is discussed in terms of the enhancement of the π−d interaction by applying pressure.  相似文献   

4.
Diamond like carbon (DLC) films were deposited on Si (111) substrates by microwave electron cyclotron resonance (ECR) plasma chemical vapour deposition (CVD) process using plasma of argon and methane gases. During deposition, a d.c. self-bias was applied to the substrates by application of 13·56 MHz rf power. DLC films deposited at three different bias voltages (−60 V, −100 V and −150 V) were characterized by FTIR, Raman spectroscopy and spectroscopic ellipsometry to study the variation in the bonding and optical properties of the deposited coatings with process parameters. The mechanical properties such as hardness and elastic modulus were measured by load depth sensing indentation technique. The DLC film deposited at −100 V bias exhibit high hardness (∼ 19 GPa), high elastic modulus (∼ 160 GPa) and high refractive index (∼ 2·16–2·26) as compared to films deposited at −60 V and −150 V substrate bias. This study clearly shows the significance of substrate bias in controlling the optical and mechanical properties of DLC films.  相似文献   

5.
Cognitive load varies the attention level, which has serious consequences in complex dynamic situations. Assessment of uncertainty in cognitive load during multiple object tracking task is necessary, as it is used to improve the cognitive capabilities. The present research work investigates the uncertainty in cognitive load of multiple object tracking task using electroencephalograph (EEG) on 25 football players. A d2 test of neuropsychological measure of attention was employed before starting the experiment. Each player participated in four levels of the task with variation in the cognitive load, which varies in terms of the targets from 2 to 5. Percentage changes in the power spectral density were estimated for the cognitive levels. Results show that the percentage changes were much more in high cognitive load than in low cognitive load. Significant changes (p < 0.05) were observed in level 1 (− 11.07 to 1.91%), level 2 (− 3.13 to − 14.51%), level 3 (− 6.33 to − 19.46%) and level 4 (− 8.10 to − 20.88%). Variation in the EEG data in terms of the combined uncertainty corresponds very well with low to high cognitive loads. The fourth level of the task with high cognitive load has more uncertainty than the low cognitive load levels. The results are useful for assessing the cognitive state of the player, which is valuable for the design of the effective training model.  相似文献   

6.
We have investigated the high-temperature thermoelectric power (TEP) of La2− x Sr x CuO4 (0.05 ≤ x ≤ 0.35) and Bi1− x Sr x MnO3 (0.5 ≤ x ≤ 0.8) up to 700 K. Based on the TEP results we have discussed the phase transitions on each case. In the case of high-T C cuprates, La2− x Sr x CuO4 (0.05 ≤ x ≤ 0.35), the TEP shows different temperature dependences in three temperature regions. At low temperature, the positive TEP rises showing a broad peak at temperature T P, which shifts to lower temperature upon Sr doping. Right above T P, the TEP decreases linearly as temperature increases. At high temperature, TEP deviates from the linear-T dependence at a certain temperature, T H, showing a saturation behavior. The systematic change of the TEP behavior is discussed in terms of the two-fluids model, which is an intrinsically inhomogeneous state, consisted of bound pairs and independent carriers in the normal state of the high-T C superconductors. For Bi1− x Sr x MnO3 (0.5 ≤ x ≤ 0.8), the negative TEP is almost temperature-independent in the high temperature regime (T CO < T < 700 K). Near the charge ordering temperature (T CO), however, TEP suddenly decreases with decrease of temperature, indicating the suppression of carrier mobility with charge ordering transition. As Bi concentration decreases, T CO shifts to lower temperature from T CO ∼ 520 K for x = 0.5 to T CO ∼ 435 K for x = 0.8, which suggests that charge ordering is related to the local lattice distortion due to highly polarizable 6s2 character of Bi3+ ion. In comparison with the resistivity data, the TEP results have been discussed in terms of the carrier localization accompanied by local lattice distortion.  相似文献   

7.
Long-term measurements (2011–2018) of ambient sulphur dioxide (SO2) and meteorology were carried out at an urban site of Delhi, India, to study the seasonal and inter-annual variations of SO2 over Delhi. The average mixing ratio of SO2 was estimated as 2.26 ± 0.48 ppb for the entire study period. Mixing ratio of ambient SO2 was estimated as 2.19 ± 0.64 ppb, 2.07 ± 0.89 ppb, 2.49 ± 1.05 ppb and 2.27 ± 0.71 ppb during winter, pre-monsoon, monsoon and post-monsoon seasons, respectively. SO2 mixing ratio was recorded maxima during monsoon (2.49 ± 1.05 ppb) season, whereas minima during pre-monsoon season (2.07 ± 0.89 ppb). The mixing ratio of SO2 showed slightly increase in the trend during observational period. Surface wind speed and wind directions analysis indicates the influence of local sources on the mixing ratio of SO2 at the study site. Backward trajectories and potential source contributing factor (PSCF) analysis also showed the local as well as the regional sources (industrial activities, coal burning and thermal power plants etc.,) influencing the mixing ratio of SO2 over Delhi.  相似文献   

8.
VNIIMS (Russia) and CMI (Czech Republic) quantum Hall resistance standards are compared using a VNIIMS portable resistance standard of 1 and 10 kΩ. Conformity is established for the dimensions of units within the limits of relative expanded (k = 2) uncertainty of 10−7. Translated from Izmeritel’naya Tekhnika, No. 12. pp. 58–61, December, 2008.  相似文献   

9.
The specific volume of the diluted magnetic semiconductor Cd1 − x Mn x GeAs2 (x = 0.06–0.3) has been determined for the first time by strain measurements at pressures of up to 7 GPa. From the pressure dependences of the relative specific volume, we evaluated the volume magnetostriction (spontaneous magnetization coefficient). A scaling relation was used to estimate the bulk modulus of the magnetically ordered and disordered phases.  相似文献   

10.
A numerical and experimental study was carried out to determine the effects of anti-symmetric laminate configuration, cutout and length/thickness ratio on the buckling behavior of E/glass-epoxy composite plates. The buckling loads were presented for symmetrically and anti-symmetrically laminated plates subjected to axial compression load. The study included two different laminate configurations ([90/45/−45/0]as and [90/45/−45/0]s), two different cutout shapes (circular and semi-circular), two different length/thickness ratios (L/t = 75 and 37.5) and three boundary conditions (clamped–clamped [CC], clamped–pinned [CP] and pinned–pinned [PP]). Firstly, the buckling loads of eight-ply E/glass-epoxy rectangular plates were determined experimentally. Then, the buckling loads of the laminated composites were calculated by ANSYS finite-element computer code. The changing in buckling load of the composites due to the presence of cutout and changing of length/thickness ratio was calculated. Finally, the experimental test results were compared to the buckling loads of plates obtained from the finite element analysis.  相似文献   

11.
The axial residual stresses in the carbon coatings deposited onto different silicon carbide monofilaments have been determined experimentally using Raman spectroscopy. The stress-dependent band shift for the carbon G-band at around 1600 cm−1, due to symmetric in-plane stretching mode of graphite, has been found to be −1.6 cm−1/GPa. Using this calibration, the axial residual stresses in carbon coatings can be estimated from measured band shifts between the broken end and middle of the monofilaments. It was found that the stresses in the coatings of all monofilaments were compressive and between −440 and −810 MPa. Modelling indicated that this was consistent with the coating stress arising from the difference in coefficients of thermal expansion of carbon and the underlying silicon carbide. The coating stress was measured as a function of distance from the broken monofilament end. It was found that the distance for the stress to build up varied greatly, from 40 μm in Ultra-SCS to 500 μm in SM1140+. This suggests there are significantly different shear stresses between the coatings and underlying silicon carbide in the different monofilaments.  相似文献   

12.
The thermal conductivity, λ of amorphous Teflon AF 1600 [poly(1,3-dioxole-4,5-difluoro-2,2-bis(trifluoromethyl)-co-tetrafluoroethylene)] has been measured at pressures up to 2 GPa in the temperature range 93–392 K. At 295 K and atmospheric pressure, we obtained λ=0.116, W·m−1·K−1. The bulk modulus was measured up to 1.0 GPa in the temperature range 150–296 K and the combined data yielded the following values ofg=(∂ln λ ∂lnp) r :2.8±0.2 at 296 K, 3.0±0.2 at 258 K, 3.0±0.2 at 236 K. 3.4±0.2 at 200 K. and 3.4±0.2 at 150 K.  相似文献   

13.
Nano In-doped ZnO (IZO) films were deposited on glass substrates by RF magnetron sputtering from a powder target (2at% In) at different substrate temperatures. The thermoelectric and magnetothermoelectric properties of the IZO films were investigated. It shows that the prepared IZO films are c-axis oriented, the grain size is about 22–29 nm, and both the thermoeletromotive force (thermo-emf) and the magneto thermo-emf change linearly with temperature difference, implying that a striking thermoelectric (Seebeck) effect and magnetothermoelectric effect can be apparently observed in IZO films. The thermo-emf is negative, the Seebeck coefficient is about −57, −32, −40 and −66 μV/K for samples deposited at the substrate temperature of room temperature, 100, 200, 300°C, respectively. The power factor is (3.11–5.89)×10−5 W/K2 m for our thin films. The absolute value of the magnetothermo-emf is smaller than the thermo-emf without a magnetic field, showing that the magnetic field has a negative effect on the Seebeck coefficient, which can be explained by the magnetoresistive effect substantially.  相似文献   

14.
We have measured the reflectivity infrared (IR) spectra of R1−x Ca x MnO3 (R = La, Pr) manganite thin films grown on different substrates (SrTiO3 (STO), LaAlO3 (LAO) and SrLaGaO4 (SLGO)) manganites over a wide frequency (50–5000 cm−1) range. In the Far IR (FIR) region the substrates dominate over the manganite spectrum. However, the previously observed infrared active modes or mode pairs could be identified. In the mid-IR (MIR) region, a characteristic insulating gap at ∼700 cm−1 is always present for all thin film studied, which shows substrate and thickness dependence.  相似文献   

15.
The authors have examined the fabrication conditions of SiC composites containing carbon nanofiber, i.e., vapor-grown carbon nanofiber (VGCF), to enhance the fracture toughness. Commercially available ultrafine SiC powder (specific surface area: 47.5 m2 g−1) was mixed with VGCF and sintering aid in the Al4C3–B4C system. Approximately 1.5 g of the mixture was uniaxially pressed at 50 MPa to obtain a compact with a diameter of 20 mm and a thickness of approximately 1.5 mm. The resulting compact was hot-pressed at 1800 °C for 1 h in Ar atmosphere under a pressure of 62 MPa. The relative density of hot-pressed SiC composite decreased from 98.0 to 96.3%, whereas the fracture toughness was enhanced from 3.8 to 5.2 MPa m1/2, as the amount of VGCF increased from 0 to 6 mass%. Furthermore, an acid treatment of VGCF was conducted to enhance its dispersibility within the SiC matrix, owing to the formation of COO groups on the VGCF surface. As a result of this treatment, the relative density and fracture toughness of hot-pressed SiC composite with 6 mass% acid-treated VGCF addition increased to 99.0% and 5.7 MPa m1/2, respectively.  相似文献   

16.
Electrodeposition of copper was done with different molecular weight (MW) polyethylene glycol (PEG) as an additive in the plating bath. The adsorbed layer formed of PEG and chloride ion (Cl − ) in the presence of copper ions has a definite role in controlling the deposition mechanism and the coating characteristics. The adsorption behaviour and suppressor nature of PEG with different MW (200–20000) on the physicochemical and the surface morphological features of the copper deposit were characterized. The results reveal that depending on the adsorption capacity of the intermediate complex, the deposit properties show gradation. There is a range of morphology with particular grain structure for different MW PEG addition. Grain size and the roughness decreased with increase in PEG MW. The concentration of Cl −  ion in the plating bath is also significant in determining the deposit mechanism of the bath as revealed from the shift in cathodic potential. The adsorbing power of the complex depends not only on PEG MW but also on Cl −  ion concentration. XRD analysis of the copper deposit obtained with low MW PEG showed (220) as the major plane and with high MW PEG the prominent orientation was (111) and (200).  相似文献   

17.
Fine-grain SiC-based ceramics have been produced via infiltration of molten silicon into preforms fabricated from SiC and graphite powders, with a phenol-formaldehyde resin as a binder. The materials thus prepared have a density of 2.70–3.15 g/cm3, dynamic modulus of elasticity from 200 to 400 GPa, compressive strength from 800 to 1900 MPa, bending strength from 150 to 315 MPa, thermal expansion coefficient (KTE) of 4.1 × 10−6 K−1, and thermal conductivity of 140–150 W/(m K). Their properties are compared to those of known silicon carbide materials fabricated by other processes. The results indicate that the density and physicomechanical properties of the silicon carbide ceramics depend little on the fabrication process and are determined primarily by the SiC content. Increasing the SiC content from 20 to 99.5 wt % increases the density of the ceramics from 2.2 to 3.15 g/cm3 and leads to an exponential rise in their physicomechanical parameters: an increase in modulus of elasticity from 95 to 430 GPa, in compressive strength from 120 to 4200 MPa, and in bending strength from 70 to 410 MPa. The thermal conductivity of the ceramics depends very little on the fabrication process, falling in the range 100–150 W/(m K) over the entire range of SiC concentrations. Their KTE decreases slightly, from 4.3 × 10−6 to 2.4 × 10−6 K−1, as the SiC content increases to 99–100 wt %.  相似文献   

18.
ZrB2-SiC ultra-high temperature ceramic composites reinforced by nano-SiC whiskers and SiC particles were prepared by microwave sintering at 1850°C. XRD and SEM techniques were used to characterize the sintered samples. It was found that microwave sintering can promote the densification of the composites at lower temperatures. The addition of SiC also improved the densification of ZrB2-SiC composites and almost fully dense ZrB2-SiC composites were obtained when the amount of SiC increased up to 30vol.%. Flexural strength and fracture toughness of the ZrB2-SiC composites were also enhanced; the maximum strength and toughness reached 625 MPa and 7.18 MPa·m1/2, respectively.  相似文献   

19.
Fluctuation induced conductivity of Ca substitution at R sites of R1−x Ca x : 123 superconductors with various x and R is investigated. This work is done by using the reported data of Sedky et al. (Phys. Rev. B 58(18):12495, 1998). The logarithmic plots of Δσ and reduced temperature € reveal three different exponents corresponding to two different crossover temperatures. The first exponent at ln € (−1≥ln €≥−2) and its values are close to 1, for which order parameter dimensionalities (OPD) are two dimensional (2D). The second exponent at ln € (−2≥ln €≥−3.5) and its values are close to 2, for which OPD are neither two dimensional (2D) nor three dimensional (3D). The third exponent at ln € (−3.5≥ln €≥−8) and its values are close to 0.5, for which OPD are three dimensional (3D). The different values of the interlayer coupling are also calculated in the normal and mean field regions, respectively. Our results are discussed in terms of oxygen disorder and system anisotropy produced by Ca substitution in R 1−x Ca x : 123 systems.  相似文献   

20.
The longitudinal magnetoresistance of a two-dimensional superconductor, β’-Et2Me2P[Pd(dmit)2]2 (dmit=C3S 5 2− ) under hydrostatic pressure was measured at low temperatures with the field applied perpendicular to the conducting layers. At 0.58 GPa, the field-dependent isothermal interlayer resistanceR╧ (H) exhibited a peak below the superconducting transition temperature T C . This peak effect can be explained by a model of resistively-shunted Josephson-Junctions. The peak is strongly suppressed at a higher pressure, 0.71 GPa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号