首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
《能源学会志》2020,93(5):1934-1941
To thoroughly understand the combustion behaviors of coke and biomass char based on its physiochemical characteristics and distribution states in iron ore sintering, three types of single, composite and pellet quasi-granules of coke and biomass char were prepared carefully, catalytic potential of Cu0.1Ce0.9O2 to increase quasi-granule combustion efficiency defined by the extent of CO destruction in flue gas was investigated. The results showed that biomass char is combusted at relative low temperature in the range of 350–800 °C because it has higher volatiles and porosity, exhibiting high reactivity compared to coke which combusts from 650 °C to 1030 °C. Pellet type has an intrinsic high combustion efficiency due to its fine fuel size and the neighboring compounds effect. Single coarse type granules have a high CO concentration in flue gas and have the highest combustion efficiency improvement by Cu0.1Ce0.9O2 loading among all the types, which is mainly attributed to CO catalytic oxidation following Mars-van Krevelen path rather than the carbon oxidation. Through intentionally producing more coarse single type and composite type granules with 3 wt% Cu0.1Ce0.9O2 in granulation, substitution ratio of biomass for coke can be increased, leading to improved combustion efficiency of ~98% without deterioration of sintering performance.  相似文献   

2.
《能源学会志》2020,93(1):324-334
Despite the relatively low emissions in fluidized-bed combustion, NOx emission for biomass combustion is still a major concern because of increasingly stricter regulations. To realize NOx emission behavior in fluidized beds comprehensively, the effects of bed temperature, excess oxygen, staged combustion, and flue gas recirculation (FGR) are investigated in this study. In particular, three different types of operation are applied in staged combustion to find out the key parameter. The results indicate that NOx emissions increase with both bed temperature and excess oxygen, in which the influence of excess oxygen is greater than the other. Lowering bed temperature by water addition seems to be able to simultaneously reduce NOx emission and agglomerate formation, especially for fuels with high nitrogen content, but the pros and cons should be considered. The results in staged combustion infer that the residence time is much more critical than the stoichiometry in the bed. As for FGR, its impact appears to depend on the type of fuel. The correlation between NOx emission behavior and fuel characteristics is also scrutinized; it is concluded that the fuel-N conversion to NOx is essentially related to some features of fuels.  相似文献   

3.
For oxy-combustion with flue gas recirculation, elevated levels of CO2 and steam affect the heat capacity of the gas, radiant transport, and other gas transport properties. A topic of widespread speculation has concerned the effect of gasification reactions of coal char on the char burning rate. To asses the impact of these reactions on the oxy-fuel combustion of pulverized coal char, we computed the char consumption characteristics for a range of CO2 and H2O reaction rate coefficients for a 100 μm coal char particle reacting in environments of varying O2, H2O, and CO2 concentrations using the kinetics code SKIPPY (Surface Kinetics in Porous Particles). Results indicate that gasification reactions reduce the char particle temperature significantly (because of the reaction endothermicity) and thereby reduce the rate of char oxidation and the radiant emission from burning char particles. However, the overall effect of the combined steam and CO2 gasification reactions is to increase the carbon consumption rate by approximately 10% in typical oxy-fuel combustion environments. The gasification reactions have a greater influence on char combustion in oxygen-enriched environments, due to the higher char combustion temperature under these conditions. In addition, the gasification reactions have increasing influence as the gas temperature increases (for a given O2 concentration) and as the particle size increases. Gasification reactions account for roughly 20% of the carbon consumption in low oxygen conditions, and for about 30% under oxygen-enriched conditions. An increase in the carbon consumption rate and a decrease in particle temperature are also evident under conventional air-blown combustion conditions when the gasification reactions are included in the model.  相似文献   

4.
针对一台采用尽早配风方式的29MW链条炉进行分区段烟气再循环对锅炉运行及NOx排放特性影响的工业试验。在挥发分析出及燃烧区段煤层下的一次风室混入再循环烟气将有效强化该区段煤层燃烧,降低该区段煤层以上燃烧空间的氧浓度,控制及消减挥发分N向NOx的转化,同时降低了穿过该区段煤层一次风的氧浓度,抑制焦炭N向NOx转化,NO消减效果最高达到25%。在焦炭燃烧区段煤层下的一次风室混入再循环烟气,能够降低穿过床层气流的氧浓度,抑制焦炭氮向NO的转化过程,该区段烟气再循环低氮效果有限,最大降幅9%。再循环烟气可以替代部分一次风,以维持足够的风室风压,进而降低穿过煤层气流的O2浓度,从而强化链条炉区段燃烧特性的低氮特征,实现链条炉的NOx减排。随着工业锅炉NOx排放指标的不断提高,烟气再循环作为一项有效的前置低氮环节,能有效降低整个低氮系统的投资,进而取得较好的经济性。  相似文献   

5.
以单头部中心分级旋流干式低排放(Dry Low Emission, DLE)燃烧室为研究对象,以天然气为燃料,针对不同的全局当量比、进口温度、进口压力条件开展试验测试和数值模拟,研究燃烧室的燃烧性能以及污染物排放的变化规律。研究发现:随全局当量比增大,中心回流区长度略有增大、宽度变窄、回流速度增大,燃料量的增加使得高温区面积明显扩大,燃烧室出口温升明显增大,出口温度分布系数变化不大,燃烧室出口CO和NOx排放摩尔分数明显增大;随进口温度的增大,中心回流区长度先明显增大再减小、宽度变窄、回流速度先增大再减小,进口空气温度的升高使得反应速率加快从而导致燃烧室出口温度升高,但温升、出口温度分布系数变化不大,CO和NOx排放摩尔分数增大;随进口压力的增大,中心回流区长度、宽度略有增大,回流速度增大,燃烧室内部和燃烧室出口温度无明显变化,出口温度分布系数减小,CO和NOx排放摩尔分数受影响较小。  相似文献   

6.
陈冬林  成珊  贠英  邓涛 《动力工程》2012,(10):765-769,785
提出了一种多段式自预热燃烧器及其4种典型的预热室结构,通过计算流体力学(CFD)方法研究了燃烧室内流场、烟气卷吸率、温度场、燃气燃尽率以及NOx体积分数,并与传统燃烧器的情况进行了对比.结果表明:与传统燃烧器相比,多段式自预热燃烧器改变了燃烧室内流场,对低热值燃料适应性强,其预热室结构同时影响烟气卷吸率和预热效果,并最终影响燃尽率与NOx体积分数;此外,燃烧器负荷对燃尽率影响甚微,但对NOx体积分数影响较大.  相似文献   

7.
The conversions of fuel-N to NO and N2O during devolatilization and char combustion stages of a single coal particle of 7 mm in diameter were investigated in a laboratory-scale flow tube reactor under oxy-fuel fluidized bed (FB) conditions. The method of isothermal thermo-gravimetric analysis (TGA) combing with the coal properties was proposed to distinguish the devolatilization and char combustion stages of coal combustion. The results show that the char combustion stage plays a dominant role in NO and N2O emissions in oxy-fuel FB combustion. Temperature changes the trade-off between NO and N2O during the two stages. With increasing temperature, the conversion ratios of fuel-N to NO during the two stages increase, and the opposite tendencies are observed for N2O. CO2 inhibits the fuel-N conversions to NO during the two stages but promotes those to N2O. Compared with air combustion, the conversion ratios of fuel-N to NO during the two stages are lower in 21%O2/79%CO2, and those to N2O are higher. At <O2> = 21–50% by volume, the conversion ratios of fuel-N to NO during the two stages reach the maximum values at <O2> = 30% by volume, and those to N2O decrease with increasing O2 concentration. H2O suppresses the fuel-N conversions to NO and N2O during the two stages. A higher coal rank has higher total conversion ratios of fuel-N to NO and N2O. Fuel-N, volatile matter, and fixed carbon contents are the important factors on fuel-N conversions to NO and N2O during the two stages. The results benefit the understanding of NO and N2O emission mechanisms during oxy-fuel FB combustion of coal.  相似文献   

8.
Low NOx burner and air staged combustion are widely applied to control NOx emission in coal-fired power plants. The gas-solid two-phase flow, pulverized coal combustion and NOx emission characteristics of a single low NOx swirl burner in an existing coal-fired boiler was numerically simulated to analyze the mechanisms of flame stability and in-flame NOx reduction. And the detailed NOx formation and reduction model under fuel rich conditions was employed to optimize NOx emissions for the low NOx burner with air staged combustion of different burner stoichiometric ratios. The results show that the specially-designed swirl burner structures including the pulverized coal concentrator, flame stabilizing ring and baffle plate create an ignition region of high gas temperature, proper oxygen concentration and high pulverized coal concentration near the annular recirculation zone at the burner outlet for flame stability. At the same time, the annular recirculation zone is generated between the primary and secondary air jets to promote the rapid ignition and combustion of pulverized coal particles to consume oxygen, and then a reducing region is formed as fuel-rich environment to contribute to in-flame NOX reduction. Moreover, the NOx concentration at the outlet of the combustion chamber is greatly reduced when the deep air staged combustion with the burner stoichiometric ratio of 0.75 is adopted, and the CO concentration at the outlet of the combustion chamber can be maintained simultaneously at a low level through the over-fired air injection of high velocity to enhance the mixing of the fresh air with the flue gas, which can provide the optimal solution for lower NOx emission in the existing coal-fired boilers.  相似文献   

9.
何宏舟 《锅炉技术》2004,35(1):65-68
研究空气分级和废气循环燃烧等方式对油燃烧中NOx 生成的影响。实验发现 :分级燃烧对于燃料氮的转化有抑制作用 ,而且对含氮量较高的油燃料效果较明显 ,不论燃烧器功率如何 ,降低一次风率总使得NOx 的生成量减少 ;当一次风率占总过量空气系数的 50 %左右时 ,燃料氮的转化率存在一个最小值 ,而后随着一次风率的提高而增大并趋于一常数 ;增加废气循环率能降低油燃烧中NOx 的生成量 ,而且对于含氮量较低的油效果较明显 ,随着废气循环率增加 ,NOx 生成量的降幅趋缓并带来火焰稳定问题 ,因此存在有一个最佳废气循环率 ;废气循环燃烧会增大燃料氮的转化率 ,而且在一次风率较小情况下表现明显  相似文献   

10.
针对某75 t/h循环流化床锅炉炉膛出口NOx排放超标问题进行分析探讨,以合理的低氮燃烧控制技术为主,辅以SNCR烟气脱硝技术,争取达到NO x超净排放要求。采用CPFD计算方法对循环流化床锅炉炉膛内的气固流动和燃烧特性进行数值模拟,运用低过量空气燃烧法和空气分级技术对锅炉进行低氮燃烧控制,研究一、二次风配比、二次风射流、过量空气系数、循环倍率和颗粒粒径等因素对炉内燃烧及NO x排放的影响。结果表明:通过低氮燃烧控制后,炉内速度场和温度场分布均匀,炉膛出口处烟气流速增加,炉膛平均烟温和出口氧浓度降低,还原性气体CO浓度和优化前基本相同,炉膛出口NOx浓度降低,减排效果显著,为以后的锅炉运行提供实际指导经验。  相似文献   

11.
氧燃烧技术是一种能综合控制燃煤污染排放的新型燃烧技术,循环烟气中NOx被碳氢化合物的均相、煤焦(碳)异相还原,使得NOx排放大为降低.高浓度CO2气氛是氧燃烧技术的最大特点之一,为了研究高浓度CO2气氛下煤焦(碳)异相还原NO相关反应,采用了密度泛函计算方法B3LYP/6-31G(d),计算煤焦(碳)异相还原NO反应以及CO和O2影响NO还原过程的相关反应,优化得到反应路径上稳定点的几何构型;采用QCISD(T)/6-311G(d,p)方法计算得到了反应过程中各稳定点的能量,并计算得到活化能;使用经典过渡态理论计算反应速率常数,得出每个反应的阿累尼乌斯表达式,研究了详细反应路径和机理.初步探讨了氧燃烧方式下煤焦异相还原NO机理,获得了重要相关反应的反应路径和动力学参数;并且为进一步研究煤焦与多种气体联合作用机理提供了理论基础.  相似文献   

12.
随着环保要求的日益提高,尤其《石油炼制工业污染物排放标准(征求意见稿)》规定发布后,对催化裂化装置再生烟气中SOx、NOx排放标准更加严格。为满足新标准要求,在缺少脱硫、脱硝装置情况下,洛阳石化2号催化裂化装置试验使用庄信万丰公司生产的NOxGETTER-NP型助燃剂。使用过程中发现,与Pt基助燃剂相比,应用NOxGETTER-NP助燃剂,每天需增加成本3945.3元,但再生烧焦效果增强,助燃效果良好,未出现尾燃情况。应用NOxGETTER-NP助燃剂,在混合进料氮含量2896.39mg/kg条件下,三旋出口烟气中NOx平均含量由176.14mg/kg降至24mg/kg,脱硝率达到86.37%,且对主催化剂无影响,产品收率、产品质量、RON、平衡剂性质等参数基本无变化。NOxGETTER-NP助燃剂虽然可以降低NOx的产生,但洛阳2号催化裂化装置掺炼闪蒸塔底油,进料中的氮含量波动较大,单纯使用脱硝助剂时,若氮含量突然增大,有可能出现烟气硝排放不合格,因此,增上脱硝设施势在必行。  相似文献   

13.
通过一款涡轮增压汽油直喷(gasoline direct injection,GDI)发动机低压废气再循环(exhaust gas recirculation,EGR)的试验,研究了EGR率和点火提前角的综合作用对增压GDI发动机的燃烧、缸压、排放和油耗等方面的影响。结果表明,在GDI增压发动机中加入EGR后,由于废气的稀释和热容作用,使缸内燃烧持续期增大,排气温度下降,燃烧相位也发生了改变。这对发动机外特性的有利影响是油耗减少,CO和NO_x排放也明显减少;不利影响是EGR的加入提高了增压发动机的排气压力,导致泵气损失增加。此外,总碳氢(total hydro carbons,THC)排放也有所增加。在GDI增压汽油机中使用EGR系统并配合点火角的调节能够有效提高热效率,降低NO_x排放。  相似文献   

14.
燃尽风喷口位置对NOx排放的影响   总被引:2,自引:2,他引:0  
针对一台采用旋流式燃烧器的煤粉炉NOx排放质量浓度较高的问题,采用空气分级燃烧方式以降低NOx排放量,基于CFD软件平台,在额定负荷下,分别对3种不同燃尽风喷口位置的改造方案进行了炉内燃烧及污染物生成的数值模拟,并通过综合比较炉内各参数的变化确定了最佳燃尽风喷口位置.结果表明:燃尽风喷口位置的上移降低了主燃区氧气的体积分数,同时使炉膛内的最高温度降低了23~29K.燃尽风喷口位置对NO,的还原效果、出口烟气温度以及煤粉焦炭转化率的影响较大.当燃尽风喷口位置升高时,NOx质量浓度降低,炉膛出口烟气温度升高,煤粉焦炭转化率下降.经综合比较炉膛出口烟气温度、NOx质量浓度以及煤粉焦炭转化率得出,距最上层燃烧器7.7m处为最佳燃尽风喷口位置.  相似文献   

15.
为了确保燃煤锅炉掺烧污泥后炉内燃烧安全稳定并控制NOx的生成,以国内某典型1 000 MW超超临界燃煤锅炉为研究对象,利用CFD软件计算研究了不同的污泥掺烧方式对锅炉温度场和NOx生成的影响。结果表明:在燃煤锅炉不同层的燃烧器掺烧污泥,掺烧污泥的燃烧器对应高度均出现了温度的下降和NOx排放浓度的降低;随着污泥分别由下往上在B,D,F层燃烧器进行掺烧,在炉膛出口处烟温升高,NOx排放浓度降低;在保持F层燃烧器总热值不变的情况下进行掺烧时,能保证锅炉整体温度水平,掺烧污泥比例越高,炉膛出口烟温越低,NOx生成量越少;在F层燃烧器掺烧污泥燃烧效果较好,有利于NOx减排,是最适合污泥掺烧的燃烧器层。  相似文献   

16.
Chemical looping combustion is a novel technology that can be used to meet the demand on energy production without CO2 emission. To improve CO2 capture efficiency in the process of chemical looping combustion of coal, a prototype configuration for chemical looping combustion of coal is made in this study. It comprises a fast fluidized bed as an air reactor, a cyclone, a spout-fluid bed as a fuel reactor and a loop-seal. The loop-seal connects the spout-fluid bed with the fast fluidized bed and is fluidized by steam to prevent the contamination of the flue gas between the two reactors. The performance of chemical looping combustion of coal is experimentally investigated with a NiO/Al2O3 oxygen carrier in a 1 kWth prototype. The experimental results show that the configuration can minimize the amount of residual char entering into the air reactor from the fuel reactor with the external circulation of oxygen carrier particles giving up to 95% of CO2 capture efficiency at a fuel reactor temperature of 985 °C. The effect of the fuel reactor temperature on the release of gaseous products of sulfur species in the air and fuel reactors is carried out. The fraction of gaseous sulfur product released in the fuel reactor increases with the fuel reactor temperature, whereas the one in the air reactor decreases correspondingly. The high fuel reactor temperature results in more SO2 formation, and H2S abatement in the fuel reactor. The increase of SO2 in the fuel reactor accelerates the reaction of SO2 with CO to form COS, and COS concentration in the fuel reactor exit gas increases with the fuel reactor temperature. The SO2 in the air reactor exit gas is composed of the product of sulfur in residual char burnt with air and that of nickel sulfide oxidization with air in the air reactor. Due to the evident decrease of residual char in the fuel reactor with increasing fuel reactor temperature, it results in the decrease of residual char entering the air reactor from the fuel reactor, and the decrease of SO2 from sulfur in the residual char burnt with air in the air reactor.  相似文献   

17.
为掌握同轴分级燃烧室性能参数随空气分级比(主燃级空气流量的比值)的变化规律,以某同轴分级燃烧室为研究对象,数值分析了空气分级比对燃烧室的燃烧效率、总压损失、出口温度分布、污染物排放和绝热壁面最高温度的影响。结果表明:空气分级比主要会改变角涡位置的燃烧温度和高温烟气的停留时间;随着空气分级比的升高,燃烧室总压损失、出口温度分布系数、NOx排放、绝热壁面最高温度逐渐升高,但燃烧效率、CO污染物排放、径向温度分布系数对空气分级比不敏感;在同轴分级燃烧室设计中,在保证燃烧稳定的前提下可采用较小的空气分级比以实现燃烧室高效、低阻、低污染燃烧。  相似文献   

18.
设计了一种预混式可控烟气回流量型低NOx燃烧器,以适应双气头多联产系统中燃料组分、成分变化时燃气轮机发电系统稳定工作的需要.在常压条件下,利用TSI热线风速仪对燃烧室内的速度分布特性进行了直接测量,并利用温度场比拟浓度场的方法,对燃烧室内气流混合特性进行了间接测量.结果表明:燃烧室内的速度分布及回流等特性可满足设计要求,气流之间的混合效果则需作进一步增强.同时,对燃烧器二次风分配器的结构提出了改进方案.  相似文献   

19.
以工业炉的高温空气燃烧技术应用为背景,对一个新型轴向旋流式单烧嘴燃烧室内天然气的高温空气燃烧特性进行了数值研究。采用数值模拟的方法研究了同心式轴向旋流燃烧器(HCASbumer)中螺旋肋片的旋转角度对燃烧特性的影响,其中湍流采用Reynolds应力模型,气相燃烧模拟采用β函数形式的PDF燃烧模型,采用离散坐标法模拟辐射换热过程,NOx模型为热力型与快速型。计算结果表明,对预热空气采用旋转射流时,能明显降低NOx生成量。对于HCAS型燃烧器,随着空气射流旋转角度的增大,燃烧室内的回流区域增大增强,降低了局部的氧体积分数分布,燃烧室中平均温度和最高温度都有所增加,且燃烬程度大幅度提高,而局部高温区缩小,只在靠近入口处出现。总的NOx排放量随着空气射流旋转角度的增大先减小,后增大。因此,适当调整肋片的旋转角度可以降低NOx生成量。  相似文献   

20.
Chemical-looping combustion (CLC) is a novel technique used for CO2 separation that has been investigated for gaseous fuel and solid fuel. The nitrogen transfer of fuel-N in the coal is experimentally investigated with a NiO/Al2O3 oxygen carrier under a continuous operation in a 1 kWth interconnected fluidized bed prototype. The effects of the fuel reactor temperature, coal type and operation conditions on the release of gaseous products of nitrogen species in the air reactor and the fuel reactor are carried out. Results show that the nitrogen transfer direction of fuel-N is toward N2 formation in the fuel reactor independent of fuel type. In the fuel reactor N2 is the sole product of nitrogen transfer of fuel-N. The concentration of N2 in the fuel reactor exit gas increases with the fuel reactor temperature. The NOx precursor of HCN can be oxidized by the oxygen carrier to form NO or N2 in the fuel reactor. However, in the fuel reactor NO from coal devolatilization and HCN oxidization by oxygen carrier is completely reduced to N2. The other NOx precursor of NH3 is completely converted to N2 due to oxidization by NiO and the catalytic effect of Ni on the decomposition of NH3. After coal devolatilization, char-N conversion in the fuel reactor is toward N2 formation according to the investigation of solid–solid reaction between char and oxygen carrier. The amount of residual char has a potential to cause formation of nitrogen contaminants in the air reactor. In the air reactor, NO is the only nitrogen contaminant, and there is no NO2 formation. The high fuel reactor temperature results in little residual char coming into the air reactor. The proportion of char-N converted to NO in the air reactor increases from 16.98% to 18.85% when the fuel reactor temperature changes from 850 to 950 °C. For the fuels containing more volatile matter, the possibility of NO formation in the air reactor is smaller than the fuels containing less volatile matter. For the fuels containing less volatile matter, char gasification rate is still a significant factor both for the carbon capture efficiency and NO formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号