首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This article presents an overview of the current progress in molecular mimetic self‐assembly of colloidal particles. Firstly, the recent study of colloidal particles at interfaces is highlighted, underlining the mesoscopic mimicry of the surface activity of amphiphilic molecules using colloidal particles. Secondly, various strategies developed thus far to impart colloidal particles with anisotropy in terms of chemical composition, surface chemistry and particle morphology, which are regarded as mesoscopic atoms and molecules, are reviewed. Thirdly, an overview of the current theoretical and experimental results of using the rules of molecular synthesis and self‐assembly to direct self‐assembly of colloidal particles is presented. Finally, the experimental challenges associated with molecular mimetic self‐assembly of colloidal particles are outlined, giving a rather conservative conclusion of the status quo of this new research field with a very optimistic outlook.  相似文献   

2.
Colloidal self‐assembly provides one promising route to fabricate spatially periodic meta‐materials with novel properties important to a number of emerging technologies. However, colloidal assembly is generally initiated via irreversible step‐changes and proceeds along unspecified, non‐equilibrium kinetic pathways with little opportunity to manipulate defects or reconfigure microstructures. Here, a conceptually new approach that enables the use of feedback control to quantitatively and reversibly guide the dynamic evolution of colloid ensembles between disordered fluid and crystalline configurations is demonstrated. The key to this approach is the use of free energy landscape models to inform feedback control laws that close the loop between real‐time sensing (via order parameters) and actuation (via tunable electrical potentials). This approach, which demonstrates controlled assembly to create ordered materials and perform active reconfiguration, is based on chemical physics that suggest it can be generalized to other microscopic processes.  相似文献   

3.
Colloidal assemblies have applications as photonic crystals and templates for functional porous materials. While there has been significant progress in controlling colloidal assemblies into defined structures, their 3D order remains difficult to characterize. Simple, low‐cost techniques are sought that characterize colloidal structures and assist optimization of process parameters. Here, structural color is presented to image the structure and dynamics of colloidal clusters prepared by a confined self‐assembly process in emulsion droplets. It is shown that characteristic anisotropic structural color motifs such as circles, stripes, triangles, or bowties arise from the defined interior grain geometry of such colloidal clusters. The optical detection of these motifs reliably distinguishes icosahedral, decahedral, and face‐centered cubic colloidal clusters and thus enables a simple yet precise characterization of their internal structure. In addition, the rotational motion and dynamics of such micrometer‐scale clusters suspended in a liquid can be followed in real time via their anisotropic coloration. Finally, monitoring the evolution of structural color provides real‐time information about the crystallization pathway within the confining emulsion droplet. Together, this work demonstrates that structural color is a simple and versatile tool to characterize the structure and dynamic properties of colloidal clusters.  相似文献   

4.
Directed self‐assembly (DSA) using soft materials is an important method for producing periodic nanostructures because it is a simple, cost‐effective process for fabricating high‐resolution patterns. Most of the previously reported DSA methods exploit the self‐assembly of block copolymers, which generates a wide range of nanostructures. In this study, cylinders obtained from supramolecular dendrimer films with a high resolution (<5 nm) exhibit planar ordering over a macroscopic area via guiding topographical templates with a high aspect ratio (>10) and high spatial resolution (≈20 nm) of guiding line patterns. Theoretical and experimental studies reveal that this property is related to geometrical anchoring on the meniscus region and physical surface anchoring on the sidewall. Furthermore, this DSA of dendrimer cylinders is demonstrated by the non‐regular geometry of the patterned template. The macroscopic planar alignment of the dendrimer nanostructure reveals an extremely small feature size (≈4.7 nm) on the wafer scale (>16 cm2). This study is expected to open avenues for the production of a large family of supramolecular dendrimers with different phases and feature dimensions oriented by the DSA approach.  相似文献   

5.
The emulsion‐based self‐assembly of nanoparticles into low‐dimensional superparticles of hollow vesicle‐like assemblies is reported. Evaporation of the oil phase at relatively low temperatures from nanoparticle‐containing oil‐in‐water emulsion droplets leads to the formation of stable and uniform sub‐micrometer vesicle‐like assembly structures in water. This result is in contrast with those from many previously reported emulsion‐based self‐assembly methods, which produce solid spherical assemblies. It is found that extra surfactants in both the oil and water phases play a key role in stabilizing nanoscale emulsion droplets and capturing hollow assembly structures. Systematic investigation into what controls the morphology in emulsion self‐assembly is carried out, and the approach is extended to fabricate more complex rattle‐like structures and 2D plates. These results demonstrate that the emulsion‐based assembly is not limited to typical thermodynamic spherical assembly structures and can be used to fabricate various types of interesting low‐dimensional assembly structures.  相似文献   

6.
Self‐assembly of 3D structures presents an attractive and scalable route to realize reconfigurable and functionally capable mesoscale devices without human intervention. A common approach for achieving this is to utilize stimuli‐responsive folding of hinged structures, which requires the integration of different materials and/or geometric arrangements along the hinges. It is demonstrated that the inclusion of Kirigami cuts in planar, hingeless bilayer thin sheets can be used to produce complex 3D shapes in an on‐demand manner. Nonlinear finite element models are developed to elucidate the mechanics of shape morphing in bilayer thin sheets and verify the predictions through swelling experiments of planar, millimeter‐scaled PDMS (polydimethylsiloxane) bilayers in organic solvents. Building upon the mechanistic understandings, The transformation of Kirigami‐cut simple bilayers into 3D shapes such as letters from the Roman alphabet (to make “ADVANCED FUNCTIONAL MATERIALS”) and open/closed polyhedral architectures is experimentally demonstrated. A possible application of the bilayers as tether‐less optical metamaterials with dynamically tunable light transmission and reflection behaviors is also shown. As the proposed mechanistic design principles could be applied to a variety of materials, this research broadly contributes toward the development of smart, tetherless, and reconfigurable multifunctional systems.  相似文献   

7.
A scalable method for site‐selective, directed self‐assembly of colloidal opals on topologically patterned substrates is presented. Here, such substrate contains optical waveguides which couple to the colloidal crystal. The site‐selectivity is achieved by a capillary network, whereas the self‐assembly process is based on controlled solvent evaporation. In the deposition process, a suspension of colloidal microspheres is dispensed on the substrate and driven into the desired crystallization sites by capillary flow. The method has been applied to realize colloidal crystals from monodisperse dielectric spheres with diameters ranging from 290 to 890 nm. The method can be implemented in an industrial wafer‐scale process.  相似文献   

8.
9.
Ultralight polymer sponges are prepared by freeze‐drying of dispersions of short electrospun fibers. In contrast to many other highly porous materials, these sponges show extremely low densities (<3 mg cm?3) in combination with low specific surface areas. The resulting hierarchical pore structure of the sponges gives basis for soft and reversibly compressible materials and to hydrophobic behavior in combination with excellent uptake for hydrophobic liquids. Owing to their large porosity, cell culturing is successful after hydrophilic modification of the sponges.  相似文献   

10.
Self‐assembly of different sized colloidal particles into multicomponent crystals results in novel material properties compared to the properties of the individual components alone. The formation of binary and, for the first time, ternary colloidal crystals through a simple and inexpensive confined‐area evaporation‐induced layer‐by‐layer (LBL) assembly method is reported. The proposed method produces high quality multicomponent colloidal crystal films over a broad range of particle size‐ratios and large surface areas (cm2) from silica/polystyrene colloidal suspensions of low concentration. By adjusting the size‐ratio and concentration of the colloidal particles, complex crystals of tunable stoichiometries are fabricated and their structural characteristics are further confirmed with reported crystal analogues. In addition, complex structures form as a result of the interplay of the template layer effect, the surface forces exerted by the meniscus of the drying liquid, the space filling principle, and entropic forces. Thus, this LBL approach is a versatile way to grow colloidal crystals with binary, ternary, or more complex structures.  相似文献   

11.
In this article, a non‐chemical crosslinking method is used to produce pure protein microparticles with an innovative approach, so‐called protein activation spontaneous and self‐assembly (PASS). The fabrication of protein microparticles is based on the idea of using the internal disulfide bridges within protein molecules as molecular linkers to assemble protein molecules into a microparticle form. The assembly process is triggered by an activating reagent–dithiothreitol (DTT), which only involved in the intermediate step without being incorporated into the resulting protein microparticles. Conventional protein microparticle fabrication methods usually involve emulsification process and chemical crosslink reactions using amine reactive reagents such as glutaraldehdye or EDC/NHS. The resulting protein microparticles are usually having various size distributions. Most importantly crosslinking reactions using amine reactive reagents will result in producing protein microparticles with undesired properties such as auto‐fluorescence and high toxicity. In contrast to the conventional methods, our technology provides a simple and robust method to produce highly homogeneous, stable and non‐fluorescence pure protein microparticles under mild conditions at physiological pH and temperature. The protein microparticles are found to be biodegradable, non‐toxic to MDCK cells and with preserved biological activities. Results on the cytotoxcity study and enzyme function demonstrate the potential applications of the protein microparticles in the area of pharmaceutics and analytical chemistry.  相似文献   

12.
Bottom‐up assembly can organize simple building blocks into complex architectures for light manipulation. The optical properties of self‐assembled polycrystalline barium carbonate/silica double helices are studied using fluorescent Fourier and Mueller matrix microscopy. Helices doped with fluorescein direct light emission along the long axis of the structure. Furthermore, light transmission measured normal and parallel to the long axis exhibits twist sense‐specific circular retardance and waveguiding, respectively, although the measurements suffer from depolarization. The helices thus integrate highly directional emission with enantiomorph‐specific polarization. This optical response emerges from the arrangement of nanoscopic mineral crystallites in the microscopic helix, and demonstrates how bottom‐up assembly can achieve ordering across multiple length scales to form complex functional materials.  相似文献   

13.
Like atoms and molecules with directional interactions, anisotropic particles could potentially assemble into a much wider range of crystalline arrays and meso‐structures than spherical particles with isotropic interactions. In this paper, the electric‐field directed assembly of geometrically anisotropic particles–colloidal dimers is studied. Rich phase behavior and different assembly regimes are found, primarily arising from the broken radial symmetry in particles. The orientations of individual dimers depend on the frequency of the electric field, the ramping direction of frequency, and the salt concentration. The competition and balance between the hydrodynamic, electric, and Brownian torques determine the orientation of individual particles, while the competition between the electrohydrodynamic force and dipolar interaction determines the aggregation of aligned particles at a given experimental condition. The field distribution near the electrode is critical to understand the orientation and assembly behavior of colloidal dimers on a conducting substrate. This study also demonstrates the effectiveness, the reversibility, and potential opportunity of applying electric field to control the orientation and direct the assembly of non‐spherical particles. In particular, two dimensional close‐packed crystals of perpendicularly aligned dimers are obtained, which shows promise in fabricating 3D photonic crystals based on dimer‐like colloids and field‐directed display.  相似文献   

14.
Surfaces with micro‐ and nanometer‐scale patterns have many potential applications, particularly in lifescience. This article reports on a versatile, straightforward, and inexpensive approach for the creation of chemical patterns using fabricated binary colloid crystals, consisting of small and large particles, as masks for the deposition of an amino‐functionalised ultrathin film by plasma polymerization. After removal of the binary colloidal mask, the characterization techniques [scanning electron microscopy (SEM) and atomic force microscopy (AFM)] reveal a surface contrast that depicts an ability of the small particles to allow diffusion of the plasma to the substrate. A plasma‐polymer film is created under the small particles and the region of substrate in direct contact with the large particle remains uncoated. Numerous types of patterns and feature heights can be produced with good fidelity over areas of several cm2 by appropriate tuning of the binary colloid crystal mask morphology and the plasma‐polymer deposition time. Finally, the amine groups of the patterned surface are used for covalent grafting poly(ethylene glycol) propionaldehyde (PEG‐PALD) by reductive amination under conditions of reduced solubility to produce a patterned surface for directed adsorption of protein. AFM investigations show that the proteins are preferentially attached to the nanometer‐scale regions of the pattern without PEG‐PALD.  相似文献   

15.
Control of interactions between nanomaterials and cells remains a biomedical challenge. A strategy is proposed to modulate the intralysosomal distribution of nanoparticles through the design of 3D suprastructures built by hydrophilic nanocrystals (NCs) coated with alkyl chains. The intracellular fate of two water‐dispersible architectures of self‐assembled hydrophobic magnetic NCs: hollow deformable shells (colloidosomes) or solid fcc particles (supraballs) is compared. These two self‐assemblies display increased cellular uptake by tumor cells compared to dispersions of the water‐soluble NC building blocks. Moreover, the self‐assembly structures increase the NCs density in lysosomes and close to the lysosome membrane. Importantly, the structural organization of NCs in colloidosomes and supraballs are maintained in lysosomes up to 8 days after internalization, whereas initially dispersed hydrophilic NCs are randomly aggregated. Supraballs and colloidosomes are differently sensed by cells due to their different architectures and mechanical properties. Flexible and soft colloidosomes deform and spread along the biological membranes. In contrast, the more rigid supraballs remain spherical. By subjecting the internalized suprastructures to a magnetic field, they both align and form long chains. Overall, it is highlighted that the mechanical and topological properties of the self‐assemblies direct their intracellular fate allowing the control intralysosomal density, ordering, and localization of NCs.  相似文献   

16.
Despite advances in the development of silk fibroin (SF)‐based hydrogels, current methods for SF gelation show significant limitations such as lack of reversible crosslinking, use of nonphysiological conditions, and difficulties in controlling gelation time. In the present study, a strategy based on dynamic metal‐ligand coordination chemistry is developed to assemble SF‐based hydrogel under physiological conditions between SF microfibers (mSF) and a polysaccharide binder. The presented SF‐based hydrogel exhibits shear‐thinning and autonomous self‐healing properties, thereby enabling the filling of irregularly shaped tissue defects without gel fragmentation. A biomineralization approach is used to generate calcium phosphate‐coated mSF, which is chelated by bisphosphonate ligands of the binder to form reversible crosslinkages. Robust dually crosslinked (DC) hydrogel is obtained through photopolymerization of acrylamide groups of the binder. DC SF‐based hydrogel supports stem cell proliferation in vitro and accelerates bone regeneration in cranial critical size defects without any additional morphogenes delivered. The developed self‐healing and photopolymerizable SF‐based hydrogel possesses significant potential for bone regeneration application with the advantages of injectability and fit‐to‐shape molding.  相似文献   

17.
18.
19.
The integration of colloidal nanocrystals with polymers adds optoelectronic functionalities to flexible and mechanically robust organic films. In particular, self‐assembled structures of nanocrystals in polymers can act as functional components enhancing, for instance, transport or optical properties of the hybrid material. This study presents Cu2Te hexagonal nanodisks that assemble into ribbons with a face‐to‐face configuration in poly(3‐hexylthiophene‐2,5‐diyl) through a controlled solvent evaporation process. The ribbons form weaving patterns that create 3D networks fully embedded in the thin polymer film at high nanodisk concentration. The photoresponse of these composite films measured in a layered vertical geometry demonstrates increased photocurrent with increasing nanocrystal loading. This study attributes this behavior to the presence of networks of Cu2Te nanodisks that form a bulk heterojunction with the semiconducting polymer, which improves exciton dissociation and the overall photoelectric response.  相似文献   

20.
Three‐dimensional integration technology results in area savings, platform power savings, and an increase in performance. Through‐silicon via (TSV) assembly and manufacturing processes can potentially introduce defects. This may result in increases in manufacturing and test costs and will cause a yield problem. To improve the yield, spare TSVs can be included to repair defective TSVs. This paper proposes a new built‐in self‐test feature to identify defective TSV channels. For defective TSVs, this paper also introduces dynamic self‐repair architectures using code‐based and hardware‐mapping based repair.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号