首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
2.
Dielectric elastomer actuators (DEAs) are soft electromechanical devices that exhibit large energy densities and fast actuation rates. They are typically produced by planar methods and, thus, expand in‐plane when actuated. Here, reported is a method for fabricating 3D interdigitated DEAs that exhibit in‐plane contractile actuation modes. First, a conductive elastomer ink is created with the desired rheology needed for printing high‐fidelity, interdigitated electrodes. Upon curing, the electrodes are then encapsulated in a self‐healing dielectric matrix composed of a plasticized, chemically crosslinked polyurethane acrylate. 3D DEA devices are fabricated with tunable mechanical properties that exhibit breakdown fields of 25 V µm?1 and actuation strains of up to 9%. As exemplars, printed are prestrain‐free rotational actuators and multi‐voxel DEAs with orthogonal actuation directions in large‐area, out‐of‐plane motifs.  相似文献   

3.
Despite the impressive performance of recent marine robots, many of their components are non-biodegradable or even toxic and may negatively impact sensitive ecosystems. To overcome these limitations, biologically-sourced hydrogels are a candidate material for marine robotics. Recent advances in embedded 3D printing have expanded the design freedom of hydrogel additive manufacturing. However, 3D printing small-scale hydrogel-based actuators remains challenging. In this study, Free form reversible embedding of suspended hydrogels (FRESH) printing is applied to fabricate small-scale biologically-derived, marine-sourced hydraulic actuators by printing thin-wall structures that are water-tight and pressurizable. Calcium-alginate hydrogels are used, a sustainable biomaterial sourced from brown seaweed. This process allows actuators to have complex shapes and internal cavities that are difficult to achieve with traditional fabrication techniques. Furthermore, it demonstrates that fabricated components are biodegradable, safely edible, and digestible by marine organisms. Finally, a reversible chelation-crosslinking mechanism is implemented to dynamically modify alginate actuators' structural stiffness and morphology. This study expands the possible design space for biodegradable marine robots by improving the manufacturability of complex soft devices using biologically-sourced materials.  相似文献   

4.
Porous structures have emerged as a breakthrough of shape‐morphing hydrogels to achieve a rapid response. However, these porous actuators generally suffer from a lack of complexity and diversity in obtained 3D shapes. Herein, a simple yet versatile strategy is developed to generate shape‐morphing hydrogels with both fast deformation and enhanced designability in 3D shapes by combining two promising technologies: electrospinning and 3D printing. Elaborate patterns are printed on mesostructured stimuli‐responsive electrospun membranes, modulating in‐plane and interlayer internal stresses induced by swelling/shrinkage mismatch, and thus guiding morphing behaviors of electrospun membranes to adapt to changes of the environment. With this strategy, a series of fast deformed hydrogel actuators are constructed with various distinctive responsive behaviors, including reversible/irreversible formations of 3D structures, folding of 3D tubes, and formations of 3D structures with multi low‐energy states. It is worth noting that although poly(N‐isopropyl acrylamide) is chosen as the model system in the present research, our strategy is applicable to other stimuli‐responsive hydrogels, which enriches designs of rapid deformed hydrogel actuators.  相似文献   

5.
Active soft materials that change shape on demand are of interest for a myriad of applications, including soft robotics, biomedical devices, and adaptive systems. Despite recent advances, the ability to rapidly design and fabricate active matter in complex, reconfigurable layouts remains challenging. Here, the 3D printing of core-sheath-shell dielectric elastomer fibers (DEF) and fiber bundles with programmable actuation is reported. Complex shape morphing responses are achieved by printing individually addressable fibers within 3D architectures, including vertical coils and fiber bundles. These DEF devices exhibit resonance frequencies up to 700 Hz and lifetimes exceeding 2.6 million cycles. The multimaterial, multicore-shell 3D printing method opens new avenues for creating active soft matter with fast programable actuation.  相似文献   

6.
Soft robots are intrinsically safe for use near humans and adaptable when operated in unstructured environments, thereby offering capabilities beyond traditional robots based on rigid components. Soft actuators are key components of soft robots; recently developed hydraulically amplified self‐healing electrostatic (HASEL) actuators provide a versatile framework to create high‐speed actuators with excellent all‐around performance. Peano‐HASEL actuators linearly contract upon application of voltage, closely mimicking the behavior of muscle. Peano‐HASEL actuators, however, produce a maximum strain of ≈15%, while skeletal muscles achieve ≈20% on average. Here, a new type of HASEL is introduced, termed high‐strain Peano‐HASEL (HS‐Peano‐HASEL) actuator, that achieves linear contraction up to ≈24%. A wide range of performance metrics are investigated, and the maximum strain of multiunit HS‐Peano‐HASEL actuators is optimized by varying materials and geometry. Furthermore, an artificial circular muscle (ACM) based on the HS‐Peano‐HASEL acts as a tubular pump, resembling the primordial heart of an ascidian. Additionally, a strain‐amplifying pulley system is introduced to increase the maximum strain of an HS‐Peano‐HASEL to 42%. The muscle‐like maximum actuation strain and excellent demonstrated all‐around performance of HS‐Peano‐HASEL actuators make them promising candidates for use in artificial organs, life‐like robotic faces, and a variety of other robotic systems.  相似文献   

7.
8.
4D printing has emerged as an important technique for fabricating 3D objects from programmable materials capable of time-dependent reshaping. In the present investigation, novel 4D thermoinks composed of laponite (LAP), an interpenetrating network of poly(N-isopropylacrylamide) (PNIPAAm), and alginate (ALG) are developed for direct printing of shape-morphing structures. This approach consists of the design and fabrication of 3D honeycomb-patterned hydrogel discs self-rolling into tubular constructs under the stimulus of temperature. The shape morphing behavior of hydrogels is due to shear-induced anisotropy generated via 3D printing. The compositionally tunable hydrogel discs can be programmed to exhibit different actuation behaviors at different temperatures. Upon immersion in 12 °C water, singly crosslinked sheets roll up into a tubular construct. When transferred to 42 °C water, the tubes first rapidly unfold and then slightly curve up in the opposite direction. Through a dual photocrosslinking of PNIPAAm, it is possible to inverse temperature-dependent shape morphing and induce self-folding at higher and unrolling at lower temperatures. The extensive self-assembling motion is essential to developing thermal actuators with broad applications in, e.g., soft robotics and active implantology, whereas controllable self-rolling of planar hydrogels is of the highest interest to biomedical engineering as it allows for effective fabrication of hollow tubes.  相似文献   

9.
3D printing technology has been widely explored for the rapid design and fabrication of hydrogels, as required by complicated soft structures and devices. Here, a new 3D printing method is presented based on the rheology modifier of Carbomer for direct ink writing of various functional hydrogels. Carbomer is shown to be highly efficient in providing ideal rheological behaviors for multifunctional hydrogel inks, including double network hydrogels, magnetic hydrogels, temperature‐sensitive hydrogels, and biogels, with a low dosage (at least 0.5% w/v) recorded. Besides the excellent printing performance, mechanical behaviors, and biocompatibility, the 3D printed multifunctional hydrogels enable various soft devices, including loadable webs, soft robots, 4D printed leaves, and hydrogel Petri dishes. Moreover, with its unprecedented capability, the Carbomer‐based 3D printing method opens new avenues for bioprinting manufacturing and integrated hydrogel devices.  相似文献   

10.
Soft polymer materials, which are similar to human tissues, have played critical roles in modern interdisciplinary research. Compared with conventional methods, 3D printing allows rapid prototyping and mass customization and is ideal for processing soft polymer materials. However, 3D printing of soft polymer materials is still in the early stages of development and is facing many challenges including limited printable materials, low printing resolution and speed, and poor functionalities. The present review aims to summarize the ideas to address these challenges. It focuses on three points: 1) how to develop printable materials and make unprintable materials printable, 2) how to choose suitable methods and improve printing resolution, and 3) how to directly construct functional structures/systems with 3D printing. After a brief introduction on this topic, the mainstream 3D printing technologies for printing soft polymer materials are reviewed, with an emphasis on improving printing resolution and speed, choosing suitable printing techniques, developing printable materials, and printing multiple materials. Moreover, the state‐of‐the‐art advancements in multimaterial 3D printing of soft polymer materials are summarized. Furthermore, the revolutions brought about by 3D printing of soft polymer materials for applications similar to biology are highlighted. Finally, viewpoints and future perspectives for this emerging field are discussed.  相似文献   

11.
Additive manufacturing strives to combine any combination of materials into 3D functional structures and devices, ultimately opening up the possibility of 3D printed machines. It remains difficult to actuate such devices, thus limiting the scope of 3D printed machines to passive devices or necessitating the incorporation of external actuators that are manufactured differently. Here, 3D printed hybrid thermoplast/conducter bilayers are explored, which can be actuated by differential heating caused by externally controllable currents flowing through their conducting faces. The functionality of such actuators is uncovered and it is shown that they allow to 3D print, in one pass, simple flexible robotic structures that propel forward under step‐wise applied voltages. Moreover, exploiting the thermoplasticity of the nonconducting plastic parts at elevated temperatures, it is shown that how strong driving leads to irreversible deformations—a form of 4D printing—which also enlarges the range of linear response of the actuators. Finally, it is shown that how to leverage such thermoplastic relaxations to accumulate plastic deformations and obtain very large deformations by alternatively driving both layers of a bilayer; this is called ratcheting. The strategy is scalable and widely applicable, and opens up a new approach to reversible actuation and irreversible 4D printing of arbitrary structures and machines.  相似文献   

12.
Drawing inspiration from the jumping motions of living creatures in nature, jumping robots have emerged as a promising research field over the past few decades due to great application potential in interstellar exploration, military reconnaissance, and life rescue missions. Early reviews mainly focused on jumping robots made of lightweight and rigid materials with mechanical components, concentrating on jumping control and stability. Herein, attention is paid to the jumping mechanisms of soft actuators assembled from various soft smarting materials and powered by different stimulus sources. The challenges and prospects of soft jumping actuators are also discussed. It is hoped that this review will contribute to the further development of soft jumping actuators and broaden their practical applications.  相似文献   

13.
Nature has inspired a new generation of robots that not only imitate the behavior of natural systems but also share their adaptability to the environment and level of compliance due to the materials used to manufacture them, which are typically made of soft matter. In order to be adaptable and compliant, these robots need to be able to locally change the mechanical properties of their soft material-based bodies according to external feedback. In this work, a soft actuator that embodies a highly controllable thermo-responsive hydrogel and changes its stiffness on direct stimulation is proposed. At a critical temperature, this stimulation triggers the reversible transition of the hydrogel, which locally stiffens the elastomeric containment at the targeted location. By dividing the actuator into multiple sections, it is possible to control its macroscopic behavior as a function of the stiffened sections. These properties are evaluated by arranging three actuators into a gripper configuration used to grasp objects. The results clearly show that the approach can be used to develop soft actuators that can modify their mechanical properties on-demand in order to conform to objects or to exert the required force.  相似文献   

14.
Examples of anisotropic movement paired with helical geometry abound in the animal and plant kingdoms are used for a variety of reasons, such as diverse social signaling directed at conspecifics or camouflage to avoid predation. Inspired by these natural phenomena, a smart sensor is developed with a chiroptical 3D actuator that can fold, bend, and twist in response to external stimuli, reflecting light of specific wavelengths, and possessing circular polarization properties. Chirophotonic crystal actuators are constructed with an asymmetric Janus structure and are fabricated by self-assembly, screen printing, and in situ photopolymerization. The optically active layer consists of cholesteric liquid crystal polymer, and the mechanically active layer is composed of a polymeric gel thin film. The programmed in-planar and out-of-planar asymmetric Janus structures control the directionality of various shapes morphing from 2D to 3D. Finite element simulations allow to predict the shape changes associated with these chirophotonic crystal actuators: flower blooming, tendril climbing, eagle hunting, ant lifting, and inchworm moving motions. By utilizing the chirophotonic crystal actuator, a reusable and portable methanol-laced water identifier is developed.  相似文献   

15.
Soft magnetic structures having a non-uniform magnetization profile can achieve multimodal locomotion that is helpful to operate in confined spaces. However, incorporating such magnetic anisotropy into their body is not straightforward. Existing methods are either limited in the anisotropic profiles they can achieve or too cumbersome and time-consuming to produce. Herein, a 3D printing method allowing to incorporate magnetic anisotropy directly into the printed soft structure is demonstrated. This offers at the same time a simple and time-efficient magnetic soft robot prototyping strategy. The proposed process involves orienting the magnetized particles in the magnetic ink used in the 3D printer by a custom electromagnetic coil system acting onto the particles while printing. The resulting structures are extensively characterized to confirm the validity of the process. The extent of orientation is determined to be between 92% and 99%. A few examples of remotely actuated small-scale soft robots that are printed through this method are also demonstrated. Just like 3D printing gives the freedom to print a large number of variations in shapes, the proposed method also gives the freedom to incorporate an extensive range of magnetic anisotropies.  相似文献   

16.
Dielectric elastomer transducers (DET) are promising candidates for electrically-driven soft robotics. However, the high viscosity and low yield stress of DET formulations prohibit 3D printing, the most common manufacturing method for designer soft actuators. DET inks optimized for direct ink writing (DIW) produce elastomers with high stiffness and mechanical losses, diminishing the utility of DET actuators. To address the antagonistic nature of processing and performance constraints, principles of capillary suspensions are used to engineer DIW DET inks. By blending two immiscible polysiloxane liquids with a filler, a capillary ink suspension is obtained, in which the ink rheology can be tuned independently of the elastomer electromechanical properties. Rheometry is performed to measure and optimize processibility as a function of filler and secondary liquid fraction. Including polar polysiloxanes as the secondary liquid produces a printed elastomer exhibiting a four-fold permittivity increase over commercial polydimethylsiloxane. The characterization and multimaterial printing into layered DET devices demonstrates that the immiscible capillary suspension improves the processability of the inks and enhances the properties of the elastomers, enabling actuation of the devices at comparatively low voltages. It is anticipated that this formulation approach will allow soft robotics to harness the full potential of DETs.  相似文献   

17.
Three‐dimensional structures that undergo reversible shape changes in response to mild stimuli enable a wide range of smart devices, such as soft robots or implantable medical devices. Herein, a dual thiol‐ene reaction scheme is used to synthesize a class of liquid crystal (LC) elastomers that can be 3D printed into complex shapes and subsequently undergo controlled shape change. Through controlling the phase transition temperature of polymerizable LC inks, morphing 3D structures with tunable actuation temperature (28 ± 2 to 105 ± 1 °C) are fabricated. Finally, multiple LC inks are 3D printed into single structures to allow for the production of untethered, thermo‐responsive structures that sequentially and reversibly undergo multiple shape changes.  相似文献   

18.
对3D打印技术进行了简介,并且根据设定的关键词、IPC分类号等对涉及3D打印技术的中国已公开专利进行检索,列出了国内前14位申请人,通过对其中5位申请人的专利申请的情况(申请类型、申请状态等)的统计分析,总结其各自的专利申请的特点,并进行了各申请人之间的比较及建议,对我国相关企业的研发和专利申请提出了建议.  相似文献   

19.
The ability to easily generate anisotropic hydrogel environments made from functional molecules with microscale resolution is an exciting possibility for the biomaterials community. This study reports a novel 3D electrophoresis‐assisted lithography (3DEAL) platform that combines elements from proteomics, biotechnology, and microfabrication to print well‐defined 3D molecular patterns within hydrogels. The potential of the 3DEAL platform is assessed by patterning immunoglobulin G, fibronectin, and elastin within nine widely used hydrogels and characterizing pattern depth, resolution, and aspect ratio. Furthermore, the technique's versatility is demonstrated by fabricating complex patterns including parallel and perpendicular columns, curved lines, gradients of molecular composition, and patterns of multiple proteins ranging from tens of micrometers to centimeters in size and depth. The functionality of the printed molecules is assessed by culturing NIH‐3T3 cells on a fibronectin‐patterned polyacrylamide‐collagen hydrogel and selectively supporting cell growth. 3DEAL is a simple, accessible, and versatile hydrogel‐patterning platform based on controlled molecular printing that may enable the development of tunable, chemically anisotropic, and hierarchical 3D environments.  相似文献   

20.
三维打印是一种增材制造工艺,其愿景是未来可以在任何地方(Anywhere)制作任何构造(Any-composition)、任何材料(Any-material)和任何几何形状(Any-geometry)的实物.综述了该技术的特点和优势,近年来在成本价格和材料方面的技术突破,以及新的应用领域.并探讨可能带来的商务范式、生产模式和生活方式的变革.最后指出该类技术的局限性和未来发展前景.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号