首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
One of the critical challenges to develop advanced lithium‐sulfur (Li‐S) batteries lies in exploring a high efficient stable sulfur cathode with robust conductive framework and high sulfur loading. Herein, a 3D flexible multifunctional hybrid is rationally constructed consisting of nitrogen‐doped carbon foam@CNTs decorated with ultrafine MgO nanoparticles for the use as advanced current collector. The dense carbon nanotubes uniformly wrapped on the carbon foam skeletons enhance the flexibility and build an interconnected conductive network for rapid ionic/electronic transport. In particular, a synergistic action of MgO nanoparticles and in situ N‐doping significantly suppresses the shuttling effect via enhanced chemisorption of lithium polysulfides. Owing to these merits, the as‐built electrode with an ultrahigh sulfur loading of 14.4 mg cm?2 manifests a high initial areal capacity of 10.4 mAh cm?2, still retains 8.8 mAh cm?2 (612 mAh g?1 in gravimetric capacity) over 50 cycles. The best cycling performance is achieved upon 800 cycles with an extremely low decay rate of 0.06% at 2 C. Furthermore, a flexible soft‐packaged Li‐S battery is readily assembled, which highlights stable electrochemical characteristics under bending and even folding. This cathode structural design may open up a potential avenue for practical application of high‐sulfur‐loading Li‐S batteries toward flexible energy‐storage devices.  相似文献   

2.
Urchin‐shaped NiCo2Se4 (u‐NCSe) nanostructures as efficient sulfur hosts are synthesized to overcome the limitations of lithium–sulfur batteries (LSBs). u‐NCSe provides a beneficial hollow structure to relieve volumetric expansion, a superior electrical conductivity to improve electron transfer, a high polarity to promote absorption of lithium polysulfides (LiPS), and outstanding electrocatalytic activity to accelerate LiPS conversion kinetics. Owing to these excellent qualities as cathode for LSBs, S@u‐NCSe delivers outstanding initial capacities up to 1403 mAh g?1 at 0.1 C and retains 626 mAh g?1 at 5 C with exceptional rate performance. More significantly, a very low capacity decay rate of only 0.016% per cycle is obtained after 2000 cycles at 3 C. Even at high sulfur loading (3.2 mg cm?2), a reversible capacity of 557 mAh g?1 is delivered after 600 cycles at 1 C. Density functional theory calculations further confirm the strong interaction between NCSe and LiPS, and cytotoxicity measurements prove the biocompatibility of NCSe. This work not only demonstrates that transition metal selenides can be promising candidates as sulfur host materials, but also provides a strategy for the rational design and the development of LSBs with long‐life and high‐rate electrochemical performance.  相似文献   

3.
The lithium–sulfur (Li–S) battery is regarded as the most promising rechargeable energy storage technology for the increasing applications of clean energy transportation systems due to its remarkable high theoretical energy density of 2.6 kWh kg?1, considerably outperforming today's lithium‐ion batteries. Additionally, the use of sulfur as active cathode material has the advantages of being inexpensive, environmentally benign, and naturally abundant. However, the insulating nature of sulfur, the fast capacity fading, and the short lifespan of Li–S batteries have been hampered their commercialization. In this paper, a functional mesoporous carbon‐coated separator is presented for improving the overall performance of Li–S batteries. A straightforward coating modification of the commercial polypropylene separator allows the integration of a conductive mesoporous carbon layer which offers a physical place to localize dissolved polysulfide intermediates and retain them as active material within the cathode side. Despite the use of a simple sulfur–carbon black mixture as cathode, the Li–S cell with a mesoporous carbon‐coated separator offers outstanding performance with an initial capacity of 1378 mAh g?1 at 0.2 C, and high reversible capacity of 723 mAh g?1, and degradation rate of only 0.081% per cycle, after 500 cycles at 0.5 C.  相似文献   

4.
Poly(thiophene) as a kind of n‐doped conjugated polymer with reversible redox behavior can be employed as anode material for lithium‐ion batteries (LIBs). However, the low redox activity and poor rate performance for the poly(thiophene)‐based anodes limit its further development. Herein, a structure‐design strategy is reported for thiophene‐containing conjugated microporous polymers (CMPs) with extraordinary electrochemical performance as anode materials in LIBs. The comparative study on the electrochemical performance of the structure‐designed thiophene‐containing CMPs reveals that high redox‐active thiophene content, highly crosslinked porous structure, and improved surface area play significant roles for enhancing electrochemical performances of the resulting CMPs. The all‐thiophene‐based polymer of poly(3,3′‐bithiophene) with crosslinked structure and a high surface area of 696 m2 g?1 exhibits a discharge capacity of as high as 1215 mAh g?1 at 45 mA g?1, excellent rate capability, and outstanding cycling stability with a capacity retention of 663 mAh g?1 at 500 mA g?1 after 1000 cycles. The structure–performance relationships revealed in this work offer a fundamental understanding in the rational design of CMPs anode materials for high performance LIBs.  相似文献   

5.
All‐solid‐state lithium metal batteries (ASSLMBs) have attracted significant attention due to their superior safety and high energy density. However, little success has been made in adopting Li metal anodes in sulfide electrolyte (SE)‐based ASSLMBs. The main challenges are the remarkable interfacial reactions and Li dendrite formation between Li metal and SEs. In this work, a solid‐state plastic crystal electrolyte (PCE) is engineered as an interlayer in SE‐based ASSLMBs. It is demonstrated that the PCE interlayer can prevent the interfacial reactions and lithium dendrite formation between SEs and Li metal. As a result, ASSLMBs with LiFePO4 exhibit a high initial capacity of 148 mAh g?1 at 0.1 C and 131 mAh g?1 at 0.5 C (1 C = 170 mA g?1), which remains at 122 mAh g?1 after 120 cycles at 0.5 C. All‐solid‐state Li‐S batteries based on the polyacrylonitrile‐sulfur composite are also demonstrated, showing an initial capacity of 1682 mAh g?1. The second discharge capacity of 890 mAh g?1 keeps at 775 mAh g?1 after 100 cycles. This work provides a new avenue to address the interfacial challenges between Li metal and SEs, enabling the successful adoption of Li metal in SE‐based ASSLMBs with high energy density.  相似文献   

6.
Lithium–sulfur battery is recognized as one of the most promising energy storage devices, while the application and commercialization are severely hindered by both the practical gravimetric and volumetric energy densities due to the low sulfur content and tap density with lightweight and nonpolar porous carbon materials as sulfur host. Herein, for the first time, conductive CoOOH sheets are introduced as carbon‐free sulfur immobilizer to fabricate sulfur‐based composite as cathode for lithium–sulfur battery. CoOOH sheet is not only a good sulfur‐loading matrix with high electron conductivity, but also exhibits outstanding electrocatalytic activity for the conversion of soluble lithium polysulfide. With an ultrahigh sulfur content of 91.8 wt% and a tap density of 1.26 g cm?3, the sulfur/CoOOH composite delivers high gravimetric capacity and volumetric capacity of 1199.4 mAh g?1‐composite and 1511.3 mAh cm?3 at 0.1C rate, respectively. Meanwhile, the sulfur‐based composite presents satisfactory cycle stability with a slow capacity decay rate of 0.09% per cycle within 500 cycles at 1C rate, thanks to the strong interaction between CoOOH and soluble polysulfides. This work provides a new strategy to realize the combination of gravimetric energy density, volumetric energy density, and good electrochemical performance of lithium–sulfur battery.  相似文献   

7.
A facile synthesis of selenium sulfide (SeSx)/carbonized polyacrylonitrile (CPAN) composites is achieved by annealing the mixture of SeS2 and polyacrylonitrile (PAN) at 600 °C under vacuum. The SeSx molecules are confined by N‐containing carbon (ring) structures in the carbonized PAN to mitigate the dissolution of polysulfide and polyselenide intermediates in carbonate‐based electrolyte. In addition, formation of solid electrolyte interphase (SEI) on the surface of SeSx/CPAN electrode in the first cycle further prevents polysulfide and polyselenide intermediates from dissolution. The synergic restriction of SeSx by both CPAN matrix and SEI layer allows SeSx/CPAN composites to be charged and discharged in a low‐cost carbonate‐based electrolyte (LiPF6 in EC/DEC) with long cycling stability and high rate capability. At a current density of 600 mA g?1, it maintains a reversible capacity of 780 mAh g?1 for 1200 cycles. Moreover, it retains 50% of the capacity at 60 mA g?1 even when the current density increases to 6 A g?1. The superior electrochemical performance of SeSx/CPAN composite demonstrates that it is a promising cathode material for long cycle life and high power density lithium ion batteries. This is the first report on long cycling stability and high rate capability of selenium sulfide‐based cathode material.  相似文献   

8.
Sulfurized polyacrylonitrile (SPAN) is a promising material capable of suppressing polysulfide dissolution in lithium–sulfur (Li–S) batteries with carbonate electrolyte. However, undesirable spontaneous formation of soluble polysulfides may arise in the ether electrolyte, and the conversion of sulfur in SPAN during the lithiation/delithiation processes is yet to be understood. Here, a highly reliable Li–S system using a freestanding fibrous SPAN cathode, as well as the sulfur conversion mechanism involved, is demonstrated. The SPAN shows high compatibility in both ether and carbonate electrolytes. The sulfur atoms existing in the form of short ? S2? and ? S3? chains are covalently bonded to the pyrolyzed PAN backbone. The electrochemical reduction of the SPAN by Li+ is a single‐phase solid–solid reaction with Li2S as the sole discharge product. Meanwhile, the parasitic reaction between Li+ and C?N bonds exists upon the first discharge, and the residual Li+ enhances the conductivity of the backbone. The recharge ability and rate capability are kinetically dominated by the activation of Li2S nanoflakes generated during discharge. At 800 mA g?1, a specific capacity of 1180 mAh g?1 is realized without capacity fading in the measured 1000 cycles, which makes SPAN promising for practical application.  相似文献   

9.
The rechargeable aluminum–sulfur (Al–S) battery is a promising next generation electrochemical energy storage system owing to its high theoretical capacity of 1672 mAh g?1 and in combining low‐cost and naturally abundant elements, Al and S. However, to date, its poor reversibility and low lifespan have limited its practical application. In this paper, a composite cathode is reported for Al–S batteries based on S anchored on a carbonized HKUST‐1 matrix (S@HKUST‐1‐C). The S@HKUST‐1‐C composite maintains a reversible capacity of 600 mAh g?1 at the 75th cycle and a reversible capacity of 460 mAh g?1 at the 500th cycle under a current density of 1 A g?1, with a Coulombic efficiency of around 95%. X‐ray diffraction and Auger spectrum results reveal that the Cu in HKUST‐1 forms S–Cu ionic clusters. This serves to facilitate the electrochemical reaction and improve the reversibility of S during charge/discharge. Additionally, Cu increases the electron conductivity at the carbon matrix/S interface to significantly decrease the kinetic barrier for the conversion of sulfur species during battery operation.  相似文献   

10.
Potassium‐ion batteries (KIBs) in organic electrolytes hold great promise as an electrochemical energy storage technology owing to the abundance of potassium, close redox potential to lithium, and similar electrochemistry with lithium system. Although carbon materials have been studied as KIB anodes, investigations on KIB cathodes have been scarcely reported. A comprehensive study on potassium Prussian blue K0.220Fe[Fe(CN)6]0.805?4.01H2O nanoparticles as a potential cathode material is for the first time reported. The cathode exhibits a high discharge voltage of 3.1–3.4 V, a high reversible capacity of 73.2 mAh g?1, and great cyclability at both low and high rates with a very small capacity decay rate of ≈0.09% per cycle. Electrochemical reaction mechanism analysis identifies the carbon‐coordinated FeIII/FeII couple as redox‐active site and proves structural stability of the cathode during charge/discharge. Furthermore, for the first time, a KIB full‐cell is presented by coupling the nanoparticles with commercial carbon materials. The full‐cell delivers a capacity of 68.5 mAh g?1 at 100 mA g?1 and retains 93.4% of the capacity after 50 cycles. Considering the low cost and material sustainability as well as the great electrochemical performances, this work may pave the way toward more studies on KIB cathodes and trigger future attention on rechargeable KIBs.  相似文献   

11.
Although lithium–sulfur (Li–S) batteries are one of the most promising energy storage devices owing to their high energy densities, the sluggish reaction kinetics and severe shuttle effect of the sulfur cathodes hinder their practical applications. Here, single atom zinc implanted MXene is introduced into a sulfur cathode, which can not only catalyze the conversion reactions of polysulfides by decreasing the energy barriers from Li2S4 to Li2S2/Li2S but also achieve strong interaction with polysulfides due to the high electronegativity of atomic zinc on MXene. Moreover, it is found that the homogenously dispersed zinc atoms can also accelerate the nucleation of Li2S2/Li2S on MXene layers during the redox reactions. As a result, the sulfur cathode with single atom zinc implanted MXene exhibits a high reversible capacity of 1136 mAh g?1. After electrode optimization, a high areal capacity of 5.3 mAh cm?2, high rate capability of 640 mAh g?1 at 6 C, and good cycle stability (80% capacity retention after 200 cycles at 4 C) can be achieved.  相似文献   

12.
Designing an optimum cell configuration that can deliver high capacity, fast charge–discharge capability, and good cycle retention is imperative for developing a high‐performance lithium–sulfur battery. Herein, a novel lithium–sulfur cell design is proposed, which consists of sulfur and magnesium–aluminum‐layered double hydroxides (MgAl‐LDH)–carbon nanotubes (CNTs) composite cathode with a modified polymer separator produced by dual side coating approaches (one side: graphene and the other side: aluminum oxides). The composite cathode functions as a combined electrocatalyst and polysulfide scavenger, greatly improving the reaction kinetics and stabilizing the Coulombic efficiency upon cycling. The modified separator enhances further Li+‐ion or electron transport and prevents undesirable contact between the cathode and dendritic lithium on the anode. The proposed lithium–sulfur cell fabricated with the as‐prepared composite cathode and modified separator exhibits a high initial discharge capacity of 1375 mA h g?1 at 0.1 C rate, excellent cycling stability during 200 cycles at 1 C rate, and superior rate capability up to 5 C rate, even with high sulfur loading of 4.0 mg cm?2. In addition, the findings that found in postmortem chracterization of cathode, separator, and Li metal anode from cycled cell help in identifying the reason for its subsequent degradation upon cycling in Li–S cells.  相似文献   

13.
The synthesis of a new type of redox‐active covalent triazine framework (rCTF) material, which is promising as an anode for Li‐ion batteries, is reported. After activation, it has a capacity up to ≈1190 mAh g?1 at 0.5C with a current density of 300 mA g?1 and a high cycling stability of over 1000 discharge/charge cycles with a stable Coulombic efficiency in an rCTF/Li half‐cell. This rCTF has a high rate performance, and at a charging rate of 20C with a current density of 12 A g?1 and it functions well for over 1000 discharge/charge cycles with a reversible capacity of over 500 mAh g?1. By electrochemical analysis and theoretical calculations, it is found that its lithium‐storage mechanism involves multi‐electron redox‐reactions at anthraquinone, triazine, and benzene rings by the accommodation of Li. The structural features and progressively increased structural disorder of the rCTF increase the kinetics of infiltration and significantly shortens the activation period, yielding fast‐charging Li‐ion half and full cells even at a high capacity loading.  相似文献   

14.
Lithium–sulfur (Li–S) batteries are promising energy storage systems due to their large theoretical energy density of 2600 Wh kg?1 and cost effectiveness. However, the severe shuttle effect of soluble lithium polysulfide intermediates (LiPSs) and sluggish redox kinetics during the cycling process cause low sulfur utilization, rapid capacity fading, and a low coulombic efficiency. Here, a 3D copper, nitrogen co‐doped hierarchically porous graphitic carbon network developed through a freeze‐drying method (denoted as 3D Cu@NC‐F) is prepared, and it possesses strong chemical absorption and electrocatalytic conversion activity for LiPSs as highly efficient sulfur host materials in Li–S batteries. The porous carbon network consisting of 2D cross‐linked ultrathin carbon nanosheets provides void space to accommodate volumetric expansion upon lithiation, while the Cu, N‐doping effect plays a critical role for the confinement of polysulfides through chemical bonding. In addition, after sulfuration of Cu@NC‐F network, the in situ grown copper sulfide (CuxS) embedded within CuxS@NC/S‐F composite catalyzes LiPSs conversion during reversible cycling, resulting in low polarization and fast redox reaction kinetics. At a current density of 0.1 C, the CuxS@NC/S‐F composites' electrode exhibits an initial capacity of 1432 mAh g?1 and maintains 1169 mAh g?1 after 120 cycles, with a coulombic efficiency of nearly 100%.  相似文献   

15.
Conductive polymer/sulfur composite materials were prepared by heating the mixture of polyacrylonitrile (PAN) and sublimed sulfur. During the heating process, PAN was dehydrogenated by sulfur, forming a conductive main chain similar to polyacetylene. At the same time, the high‐polarity functional group –CN cyclized at the melt state, forming a thermally stable heterocyclic compound in which sulfur was embedded. The nanodispersed composites showed excellent electrochemical properties. Tested as cathode material in a non‐aqueous lithium cell based on poly(vinylidene fluoride) (PVDF) gel electrolyte at room temperature, the composite exhibited a specific capacity up to 850 mA h g–1 in the initial cycle. Its specific capacity remained above 600 mA h g–1 after 50 cycles, about five times that of LiCoO2, and recovered partly after replacement of the anode with a fresh lithium sheet. The utilization of the electrochemically active sulfur was about 90 % assuming a complete reaction to the product, Li2S.  相似文献   

16.
Rational design of sulfur host materials with high electrical conductivity and strong polysulfides (PS) confinement is indispensable for high‐performance lithium–sulfur (Li–S) batteries. This study presents one type of new polymer material based on main‐chain imidazolium‐based ionic polymer (ImIP) and carbon nanotubes (CNTs); the polymer composites can serve as a precursor of CNT/NPC‐300, in which close coverage and seamless junction of CNTs by N‐doped porous carbon (NPC) form a 3D conductive network. CNT/NPC‐300 inherits and strengthens the advantages of both high electrical conductivity from CNTs and strong PS entrapping ability from NPC. Benefiting from the improved attributes, the CNT/NPC‐300‐57S electrode shows much higher reversible capacity, rate capability, and cycling stability than NPC‐57S and CNTs‐56S. The initial discharge capacity of 1065 mA h g?1 is achieved at 0.5 C with the capacity retention of 817 mA h g?1 over 300 cycles. Importantly, when counter bromide anion in the composite of CNTs and ImIP is metathesized to bis(trifluoromethane sulfonimide), heteroatom sulfur is cooperatively incorporated into the carbon hosts, and the surface area is increased with the promotion of micropore formation, thus further improving electrochemical performance. This provides a new method for optimizing porous properties and dopant components of the cathode materials in Li–S batteries.  相似文献   

17.
A copper‐stabilized sulfur‐microporous carbon ( MC‐Cu‐S) composite is synthesized by uniformly dispersing 10% highly electronically conductive Cu nanoparticles into microporous carbon (MC), followed by wet‐impregnating S. In the MC‐Cu‐S composite, the MC host that physically confines S/polysulfides provides free space to accommodate volumetric expansion of S during lithiation, while the Cu nanoparticles that are anchored in the MC further chemically interact with S/polysulfides through bonding between Cu and S/polysulfides. The Cu loading allows the S content to increase from 30 to 50% in the carbon‐S cathode material without scarifying the electrochemical performance in a low‐cost carbonate electrolyte. At a current density of 100 mA g‐1, the MC‐Cu‐S cathode shows that Coulumbic efficiency is close to 100% and capacity maintains more than 600 mAh g‐1 with progressive cycling up to more than 500 cycles. In addition, the Cu nano‐inclusins also enhance the electronic conductivity of the MC‐Cu‐S composite, remarkably increasing the rate capabilities. Even the current density increases 10.0 A g‐1, the MC‐Cu‐S cathode can still deliver a capacity of 200 mAh g‐1. This strategy of stabilization of S with small amount of metal nanoparticles anchored in MC provides an effective approach to improve the cycling stability, Coulumbic efficiency, and S loading for Li–S batteries.  相似文献   

18.
The main obstacles that hinder the development of efficient lithium sulfur (Li–S) batteries are the polysulfide shuttling effect in sulfur cathode and the uncontrollable growth of dendritic Li in the anode. An all‐purpose flexible electrode that can be used both in sulfur cathode and Li metal anode is reported, and its application in wearable and portable storage electronic devices is demonstrated. The flexible electrode consists of a bimetallic CoNi nanoparticle‐embedded porous conductive scaffold with multiple Co/Ni‐N active sites (CoNi@PNCFs). Both experimental and theoretical analysis show that, when used as the cathode, the CoNi and Co/Ni‐N active sites implanted on the porous CoNi@PNCFs significantly promote chemical immobilization toward soluble lithium polysulfides and their rapid conversion into insoluble Li2S, and therefore effectively mitigates the polysulfide shuttling effect. Additionally, a 3D matrix constructed with porous carbonous skeleton and multiple active centers successfully induces homogenous Li growth, realizing a dendrite‐free Li metal anode. A Li–S battery assembled with S/CoNi@PNCFs cathode and Li/CoNi@PNCFs anode exhibits a high reversible specific capacity of 785 mAh g?1 and long cycle performance at 5 C (capacity fading rate of 0.016% over 1500 cycles).  相似文献   

19.
Hierarchical porous carbon (HPC, DUT‐106) with tailored pore structure is synthesized using a versatile approach based on ZnO nanoparticles avoiding limitations present in conventional silica hard templating approaches. The benefit of the process presented here is the removal of all pore building components by pyrolysis of the ZnO/carbon composite without any need for either toxic/reactive gases or purification of the as‐prepared hierarchical porous carbon. The carbothermal reduction process is accompanied by an advantageous growing of distinctive micropores within the thin carbon walls. The resulting materials show not only high internal porosity (total pore volume up to 3.9 cm3 g?1) but also a large number of electrochemical reaction sites due to their remarkably high specific surface area (up to 3060 m2 g?1), which renders them particularly suitable for the application as sulfur host material. Applied in the lithium‐sulfur battery, the HPC/sulfur composite exhibits a capacity of >1200 mAh g?1‐sulfur (>750 mAh g?1 electrode) at a high sulfur loading of ≥ 3 mg cm?2 as well as outstanding rate capability. In fact, this impressive performance is achieved even using a low amount of electrolyte (6.8 μl mg?1 sulfur) allowing for further weight reduction and maintenance of high energy density on cell level.  相似文献   

20.
Designing an appropriate cathode is still a challenge for lithium–sulfur batteries (LSBs) to overcome the polysulfides shuttling and sluggish redox reactions. Herein, 2D siloxene nanosheets are developed by a rational wet‐chemistry exfoliation approach, from which S@siloxene@graphene (Si/G) hybrids are constructed as cathodes in Li‐S cells. The siloxene possesses corrugated 2D Si backbone with abundant O grafted in Si6 rings and hydroxyl‐functionalized surface, which can effectively intercept polysulfides via synergistic effects of chemical trapping capability and kinetically enhanced polysulfides conversion. Theoretical analysis further reveals that siloxene can significantly elevate the adsorption energies and lower energy barrier for Li+ diffusion. The LSBs assembled with 2D Si/G hybrid cathodes exhibit greatly enhanced rate performance (919, 759, and 646 mAh g?1 at 4 C with sulfur loading of 1, 2.9, and 4.2 mg cm?2, respectively) and superb durability (demonstrated by 1000 cycles with an initial capacity of 951 mAh g?1 and negligible 0.032% decay rate at 1 C with sulfur loading of 4.2 mg cm?2). It is expected that the study presented here may open up a new vision toward developing high‐performance LSBs with siloxene for practical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号