首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rational manipulation of multimetal hybrid materials (HMs) with tunable substitution or phases is evolving as an effective strategy to meet the controllable electromagnetic (EM) properties and EM wave (EMW) absorption. Herein, a new thermodynamic and kinetic cocontrol strategy is proposed to construct Zn/Co bimetal HMs with tuning ion and phase hybridization for synergistic effect on EM properties for the first time. Auxiliary chelating agent triethanolamine (TEA) dominates the phase separation by stepwise Zn/Co deposition in metal–organic frameworks, then the pyrolysis process under gradient temperature give rise to controllable ion hybridization products due to thermal motion. Benefiting from the tunable collaboration between defects polarization and interfacial polarization, the 700 °C HMs exhibit ultrahigh EM parameters and EMW absorption, of which products with no TEA deliver the effective absorbing bandwidth of 4.80 GHz (1.6 mm) and minimum reflection loss of −45.85 dB. The results indicated that synergistic effect of ion and phase hybridization can improve the defects induced “polarization centers” and coherent interfaces induced interfacial polarization. Furthermore, the comprehensive research and deep understanding on respective contribution of hybridization forms provide a precise inspiration in developing bimetal and even multimetal ferrite with tunable hybridization structure.  相似文献   

2.
羰基铁粉作为常见的电磁波吸收涂料,其形貌和含量对电磁波吸收性能有极大影响。为掌握羰基铁粉吸波涂料的介电常数、磁导率等参数随频率的变化规律,制备并测试了不同配比的微米级片状羰基铁粉同轴环样品。测试结果表明:羰基铁粉的最佳质量分数为60%~80%,样品厚度为2 mm、2.5 mm时,反射损耗-10 dB以下的有效吸收频宽分别为7.36 GHz、2.4 GHz,最大反射损耗值分别为-19.612 dB、-27.707 dB。样品厚度增加,最大吸收频率移向低频端。  相似文献   

3.
To tackle the increasingly complex electromagnetic (EM) pollution environment, the application-oriented electromagnetic wave (EMW) absorption materials with ultra-thin, light weight and strong tolerance to harsh environment are urgently explored. Although graphene aerogel-based lightweight EMW absorbers have been developed, thinner thickness and more effective polarization loss strategies are still essential. Based on the theory of EMW transmission, this work innovatively proposes a high attenuation design strategy for obtaining ultra-thin EMW absorption materials, cobalt selenide (CoSe2) is determined as animportant part of ultra-thin absorbers. In order to obtain a dielectric parameter range that satisfies the ultra-thin absorption characteristics and improve the lightweight properties of EMW absorption materials, a composite of CoSe2 modified N-doped reduced graphene oxide (N-RGO/CoSe2) is designed. Meanwhile, the controllable introduction of defect engineering into RGO can activate Schottky heterointerfaces of composites to generate a strong interfacial polarization effect, achieving ultra-thin characteristics while significantly improving the EM loss capability. In addition, infrared thermal images and anti-icing experiments show that the composite has good corrosion resistance, infrared stealth, and thermal insulation properties. Therefore, this work provides an effective strategy for obtaining thin-thickness, light-weight, and high-performance EMW absorption materials, embodying the advantages of N-RGO/CoSe2 composites in practical applications.  相似文献   

4.
High‐performance graphene microwave absorption materials are highly desirable in daily life and some extreme situations. A simple technique for the direct growth of graphene as absorption fillers in wave‐transmitting matrices is of paramount importance to bring it to real‐world application. Herein, a simple chemical vapor deposition (CVD) route for the direct growth of edge‐rich graphene (ERG) with tailored structures and tunable dielectric properties in porous Si3N4 ceramics using only methyl alcohol (CH3OH) as precursor is reported. The large O/C atomic ratio of CH3OH helps to build a mild oxidizing atmosphere and leads to a unique structure featuring open graphite nanosteps and freestanding nanoplanes, endowing the ERG/Si3N4 hybrid with an appropriate balance between good impedance matching and strong loss capacity. Accordingly, the prepared materials exhibit superior electromagnetic wave absorption, far surpassing that of traditional CVD graphene and reduced graphene oxide‐based materials, achieving an effective absorption bandwidth of 4.2 GHz covering the entire X band, with a thickness of 3.75 mm and a negligibly low loading content of absorbents. The results provide new insights for developing novel microwave absorption materials with strong reflection loss and wide absorption frequency range.  相似文献   

5.
The development of multicomponent dielectric composites has become a mainstream approach for obtaining excellent electromagnetic wave (EMW) absorbers. However, conventional component introduction is often performed blindly and based only on semiempirical rules, lacking precise modulation of components, interfaces, and defects during the reaction process. Herein, a competitive reaction mechanism is proposed for the first time, in which not only the metal ion concentration but also its characteristic are two feasible parameters to control the components, interfaces, and defects to tailor the EMW absorption performances of Cu-based binary metal sulfides. The appropriate heterogeneous interfaces and components and the abundant defects can synergistically benefit the EMW absorption capacity by forming perfect impedance matching and multiple dielectric polarizations. As a result, combined with these advantages, an effective absorption band) of 6.80 GHz (6.3–13.1 GHz) is achieved at 2.80 mm for Cu–Co binary metal sulfide, showing the sole middle-frequency broadband absorption of reported sulfide-based absorbers to date. Other Cu-based binary metal sulfides deliver different EMW absorption behaviors. This work breaks through the limitation of traditional component design, opening up a novel methodology for designing multicomponent composites beyond sulfides with broadband absorption.  相似文献   

6.
Dimensional engineering of appropriate structure is an effective approach to achieve high-performance electromagnetic (EM) wave absorption for magnetic materials. However, controllable modulation of the material configuration and a comprehensive understanding of the relationship between structure and loss mechanism remain challenging. Herein, magnetic CoNi pentagonal nanopagodas (PNPs) are ingeniously tailored using a competition orientation strategy, in which high-density PNPs with sharp corners/edges and hierarchical structure are rooted in situ on the surface of CoNi alloy microsphere. This unique configuration of PNPs originates from the orientation growth of CoNi fivefold twins, which can be effectively regulated by manipulating metal ratio and evolves into flake-, serrated thorn-, prismoid-, and blocks-like morphologies. Optimized CoNi microspheres with high-density PNPs exhibit a broad absorption bandwidth of 6.82 GHz at only 1.8 mm thickness. Cross-scale magnetic coupling networks strengthen magnetic loss ability, magnetocrystalline defects induce dielectric polarization enhancement, which are intuitively confirmed by Lorentz off-axis electron holography and geometric phase analysis. The underlying mechanism of enhanced magnetic interaction in sharp structure is clearly deciphered by micromagnetic simulation. This study provides methodological guidance for dimensional engineering in fabricating hierarchical magnetic structure and significant insights into the morphology-dependent loss mechanism for magnetic EM absorption materials.  相似文献   

7.
The fabrication of nanometer-sized magnetic heterostructures with controlled magnetic components and specific interfaces holds great significance in the field of electromagnetic (EM) wave absorption. However, the process of achieving these structures still poses significant challenges. Here, abundant magnetic heterostructures are successfully fabricated by utilizing the surface energy anisotropy differences of the nonasymmetric hammer-shaped interface to support the nucleation and growth of magnetic heterostructure components while effectively inhibiting their aggregation. Through a confined growth strategy via in situ growth of FeOOH and sequentially precise thermal treatments, dispersion of the heterostructures is achieved at the nanometer scale, while also observing a high degree of chemical stability due to occurrence of a charge-compensation effect at the interface. Consequently, a series of magnetic heterostructures are obtained via phase translations of FeOOH precursors. The nanometer-sized heterostructures demonstrate multilevel interfacial polarization effects. Furthermore, the hierarchical core–shell structure of the heterostructures promotes anisotropic polarization absorption. As a result, the multiple interfaces and nanometer-sized Fe/Fe3O4@SiO2@Fe-2 heterostructures demonstrate improved EM wave attenuation performance. Remarkably, they achieve an absorption bandwidth of 9 GHz at a thickness of 1.8 mm. A novel avenue is introduced here for investigating the intricate relationship between structure and properties in magnetic heterostructures.  相似文献   

8.
As a next generation of detection technology, terahertz technology is very promising. In this work, a highly efficient terahertz wave absorber based on 3D graphene foam (3DG) is first reported. Excellent terahertz absorption property at frequency ranging from 0.1 to 1.2 THz is obtained owing to faint surface reflection and enormous internal absorption. By precise control of the constant properties for 3DG, the reflection loss (RL) value of 19 dB is acquired and the qualified frequency bandwidth (with RL value over 10 dB) covers 95% of the entire measured bandwidth at normal incidence, which far surpasses most reported materials. More importantly, the terahertz absorption performance of 3DG enhances obviously with increasing the incidence while majority of materials become invalid at oblique incidence, instead. At the incidence of 45°, the maximum RL value increases 50% from 19 to 28.6 dB and the qualified frequency bandwidth covers 100% of the measured bandwidth. After considering all core indicators involving density, qualified bandwidth, and RL values, the specific average terahertz absorption (SATA) property is investigated. The SATA value of 3DG is over 3000 times higher than those of other materials in open literatures.  相似文献   

9.
Solution‐gated graphene transistors with graphene as both channel and gate electrodes are fabricated for the first time and used as dopamine sensors with the detection limit down to 1 nM, which is three orders of magnitude better than that of conventional electrochemical measurements. The sensing mechanism is attributed to the change of effective gate voltage applied on the transistors induced by the electro‐oxidation of dopamine at the graphene gate electrodes. The interference from glucose, uric acid, and ascorbic acid on the dopamine sensor is characterized. The selectivity of the dopamine sensor is dramatically improved by modifying the gate electrode with a thin Nafion film by solution process. This work paves the way for developing many other biosensors based on the solution‐gated graphene transistors by specifically functionalizing the gate electrodes. Because the devices are mainly made of graphene, they are potentially low cost and ideal for high‐density integration as multifunctional sensor arrays.  相似文献   

10.
The rational design of magnetic composites has great potential for electromagnetic (EM) absorption, particularly in the low-frequency range of 2–8 GHz. However, the scalable synthesis of such magnetic absorbers with both high magnetic content and good dispersity remains challenging. In this study, a confined diffusion strategy is proposed to fabricate functional magnetic-carbon hollow microspheres. Driven by the ferromagnetic enhanced Kirkendall diffusion effect, the in situ alloying of FeCo nanoparticles is tightly confined in carbon shells, effectively inhibiting magnetic agglomeration. Moreover, the core–shell FeCo–carbon nano-units further assemble into dispersive microscale magnetic-carbon Janus bulges on both the inner and outer surfaces of the hollow microsphere. The optimized hollow FeCo@C microspheres exhibit excellent low-frequency EM wave absorption performance: the minimum reflection loss (RLmin) is −35.9 dB, and the absorption bandwidth covers almost the entire C-band. Systematic investigation reveals that the large size of the magnetic-carbon integration, high–density confined magnetic units, and strong magnetic coupling are essential for enhancing the magnetic loss dissipation of low-frequency EM waves. This study provides a novel strategy for fabricating advanced EM wave absorbers and significant inspiration for investigating the magnetic attenuation mechanism at low frequency.  相似文献   

11.
Hierarchically porous composites with mesoporous carbon wrapping around the macroporous graphene aerogel can combine the advantages of both components and are expected to show excellent performance in electrochemical energy devices. However, the fabrication of such composites is challenging due to the lack of an effective strategy to control the porosity of the mesostructured carbon layers. Here an interface‐induced co‐assembly approach towards hierarchically mesoporous carbon/graphene aerogel composites, possessing interconnected macroporous graphene networks covered by highly ordered mesoporous carbon with a diameter of ≈9.6 nm, is reported. And the orientation of the mesopores (vertical or horizontal to the surface of the composites) can be tuned by the ratio of the components. As the electrodes in supercapacitors, the resulting composites demonstrate outstanding electrochemical performances. More importantly, the synthesis strategy provides an ideal platform for hierarchically porous graphene composites with potential for energy storage and conversion applications.  相似文献   

12.
“电磁场与电磁波”课程的Matlab辅助教学   总被引:7,自引:0,他引:7  
为了提高教学的可视化,我们在"电磁场与电磁波"课程教学中引入Matlab软件工具。本文针对课程中的难点和重点,利用Matlab工具箱及各类函数,对于具体的实例给出了仿真结果。Matlab软件工具在教学中的应用,改进了教学方法和手段,丰富了教学内容,取得了良好的教学效果,为课程教学改革探索了新的思路。  相似文献   

13.
MXenes, a young family of 2D transition metal carbides/nitrides, show great potential in electrochemical energy storage applications. Herein, a high performance ultrathin flexible solid‐state supercapacitor is demonstrated based on a Mo1.33C MXene with vacancy ordering in an aligned layer structure MXene/poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonic acid) (PEDOT:PSS) composite film posttreated with concentrated H2SO4. The flexible solid‐state supercapacitor delivers a maximum capacitance of 568 F cm?3, an ultrahigh energy density of 33.2 mWh cm?3 and a power density of 19 470 mW cm?3. The Mo1.33C MXene/PEDOT:PSS composite film shows a reduction in resistance upon H2SO4 treatment, a higher capacitance (1310 F cm?3) and improved rate capabilities than both pristine Mo1.33C MXene and the nontreated Mo1.33C/PEDOT:PSS composite films. The enhanced capacitance and stability are attributed to the synergistic effect of increased interlayer spacing between Mo1.33C MXene layers due to insertion of conductive PEDOT, and surface redox processes of the PEDOT and the MXene.  相似文献   

14.
The development of electrically conducting fibers based on known cytocompatible materials is of interest to those engaged in tissue regeneration using electrical stimulation. Herein, it is demonstrated that with the aid of rheological insights, optimized formulations of graphene containing spinnable poly(lactic‐co‐glycolic acid) (PLGA) dopes can be made possible. This helps extend the general understanding of the mechanics involved in order to deliberately translate the intrinsic superior electrical and mechanical properties of solution‐processed graphene into the design process and practical fiber architectural engineering. The as‐produced fibers are found to exhibit excellent electrical conductivity and electrochemical performance, good mechanical properties, and cellular affinity. At the highest loading of graphene (24.3 wt%), the conductivity of as‐prepared fibers is as high as 150 S m?1 (more than two orders of magnitude higher than the highest conductivity achieved for any type of nanocarbon‐PLGA composite fibers) reported previously. Moreover, the Young's modulus and tensile strength of the base fiber are enhanced 647‐ and 59‐folds, respectively, through addition of graphene.  相似文献   

15.
Ionic soft actuators, which exhibit large mechanical deformations under low electrical stimuli, are attracting attention in recent years with the advent of soft and wearable electronics. However, a key challenge for making high‐performance ionic soft actuators with large bending deformation and fast actuation speed is to develop a stretchable and flexible electrode having high electrical conductivity and electrochemical capacitance. Here, a functionally antagonistic hybrid electrode with hollow tubular graphene meshes and nitrogen‐doped crumpled graphene is newly reported for superior ionic soft actuators. Three‐dimensional network of hollow tubular graphene mesh provides high electrical conductivity and mechanically resilient functionality on whole electrode domain. On the contrary, nitrogen‐doped wrinkled graphene supplies ultrahigh capacitance and stretchability, which are indispensably required for improving electrochemical activity in ionic soft actuators. Present results show that the functionally antagonistic hybrid electrode greatly enhances the actuation performances of ionic soft actuators, resulting in much larger bending deformation up to 620%, ten times faster rise time and much lower phase delay in a broad range of input frequencies. This outstanding enhancement mostly attributes to exceptional properties and synergistic effects between hollow tubular graphene mesh and nitrogen‐doped crumpled graphene, which have functionally antagonistic roles in charge transfer and charge injection, respectively.  相似文献   

16.
Noise is an environmental pollutant with recognized impacts on the psychological and physiological health of humans. Many porous materials are often limited by low sound absorption over a broad frequency range, delicacy, excessive weight and thickness, poor moisture insulation, high temperature instability, and lack of readiness for high volume commercialization. Herein, an efficient and robust lamella‐structure is reported as an acoustic absorber based on self‐assembled interconnected graphene oxide (GO) sheets supported by a grill‐shaped melamine skeleton. The fabricated lamella structure exhibits ≈60.3% enhancement over a broad absorption band between 128 and 4000 Hz (≈100% at lower frequencies) compared to the melamine foam. The enhanced acoustic absorption is identified to be structure dependent regardless of the density. The sound dissipation in the open‐celled structure is due to the viscous and thermal losses, whereas it is predominantly tortuosity in wave propagation and enhanced surface area for the GO‐based lamella. In addition to the enhanced acoustic absorption and mechanical robustness, the lamella provides superior structural functionality over many conventional sound absorbers including, moisture/mist insulation and fire retardancy. The fabrication of this new sound absorber is inexpensive, scalable and can be adapted for extensive applications in commercial, residential, and industrial building structures.  相似文献   

17.
MXene materials have attracted increasing attention in electrochemical energy‐storage applications while MXene also becomes photo‐active at the quantum dot scale, making it an alternative for solar‐energy‐conversion devices. A Janus‐structured cobalt‐nanoparticle‐coupled Ti3C2 MXene quantum dot (Co‐MQD) Schottky catalyst with tunable cobalt‐loading content serving as a photoelectrochemical water oxidation photoanode is demonstrated. The introduction of cobalt triggers concomitant surface‐plasmon effects and acts as a water oxidation center, enabling visible‐light harvesting capability and improving surface reaction kinetics. Most importantly, due to the rectifying effects of Co‐MQD Schottky junctions, photogenerated carrier separation/injection efficiency can be fundamentally facilitated. Specifically, Co‐MQD‐48 exhibits both superior photoelectrocatalysis (2.99 mA cm?2 at 1.23 V vs RHE) and charge migration performance (87.56%), which corresponds to 194% and 236% improvement compared with MQD. Furthermore, excellent photostability can be achieved with less than 6.6% loss for 10 h cycling reaction. This fills in gaps in MXene material research in photoelectrocatalysis and allows for the extension of MXene into optical‐related fields.  相似文献   

18.
Although flexible and multifunctional textiles are promising for wearable electronics and portable device applications, the main issue is to endow textiles with multifunctionalities while maintaining their innate flexible and porous features. Herein, a vacuum‐assisted layer‐by‐layer assembly technique is demonstrated to conformally deposit electrically conductive substances on textiles for developing multifunctional and flexible textiles with superb electromagnetic interference (EMI) shielding performances, superhydrophobicity, and highly sensitive humidity response. The formed leaf‐like nanostructure is composed of silver nanowires (AgNWs) as the highly conductive skeleton (vein) and transition metal carbide/carbonitride (MXene) nanosheets as the lamina. The presence of MXene protects AgNWs from oxidation and enhances the combination of AgNWs with the fabric substrate, and the transformation of its functional groups leads to self‐derived hydrophobicity. The flexible and multifunctional textile exhibits a low sheet resistance of 0.8 Ω sq?1, outstanding EMI shielding efficiency of 54 dB in the X‐band at a small thickness of 120 µm, and highly sensitive humidity responses, while retaining its satisfactory porosity and permeability. The self‐derived hydrophobicity with a large contact angle of >140° is achieved by aging the hydrophilic MXene coated silk. The wearable multifunctional textiles are highly promising for applications in intelligent garments, humidity sensors, actuators, and EMI shielding.  相似文献   

19.
This study reports on the fabrication of pressure/temperature/strain sensors and all‐solid‐state flexible supercapacitors using only polydimethylsiloxane coated microporous polypyrrole/graphene foam composite (PDMS/PPy/GF) as a common material. A dual‐mode sensor is designed with PDMS/PPy/GF, which measures pressure and temperature with the changes of current and voltage, respectively, without interference to each other. The fabricated dual‐mode sensor shows high sensitivity, fast response/recovery, and high durability during 10 000 cycles of pressure loading. The pressure is estimated using the thermoelectric voltage induced by simultaneous increase in temperature caused by a finger touch on the sensor. Additionally, a resistor‐type strain sensor fabricated using the same PDMS/PPy/GF could detect the strain up to 50%. Flexible, high performance supercapacitor used as a power supply is fabricated with electrodes of PPy/GF for its high surface area and pseudocapacitance. Furthermore, an integrated system of such fabricated multifunctional sensors and a supercapacitor on a skin‐attachable flexible substrate using liquid–metal interconnections operates well, whereas sensors are driven by the power of the supercapacitor. This study clearly demonstrates that the appropriate choice of a single functional material enables fabrication of active multifunctional sensors for pressure, temperature, and strain, as well as the supercapacitor, that could be used in wirelessly powered wearable devices.  相似文献   

20.
Polysulfated nanomaterials that mimic the extracellular cell matrix are of great interest for their potential to modulate cellular responses and to bind and neutralize pathogens. However, control over the density of active functional groups on such biomimetics is essential for efficient interactions, and this remains a challenge. In this regard, producing polysulfated graphene derivatives with control over their functionality is an intriguing accomplishment in order to obtain highly effective 2D platforms for pathogen interactions. Here, a facile and efficient method for the controlled attachment of a heparin sulfate mimic on the surface of graphene is reported. Dichlorotriazine groups are conjugated to the surface of graphene by a one‐pot [2+1] nitrene cycloaddition reaction at ambient conditions, providing derivatives with defined functionality. Consecutive step by step conjugation of hyperbranched polyglycerol to the dichlorotriazine groups and eventual conversion to the polyglycerol sulfate result in the graphene based heparin biomimetics. Scanning force microscopy, cryo‐transmission electron microscopy, and in vitro bioassays reveal strong interactions between the functionalized graphene (thoroughly covered by a sulfated polymer) and vesicular stomatitis virus. Infection experiments with highly sulfated versions of graphene drastically promote the infection process, leading to higher viral titers compared to nonsulfated analogues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号