首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although high carrier mobility organic field‐effect transistors (OFETs) are required for high‐speed device applications, improving the carrier mobility alone does not lead to high‐speed operation. Because the cut‐off frequency is determined predominantly by the total resistance and parasitic capacitance of a transistor, it is necessary to miniaturize OFETs while reducing these factors. Depositing a dopant layer only at the metal/semiconductor interface is an effective technique to reduce the contact resistance. However, fine‐patterning techniques for a dopant layer are still challenging especially for a top‐contact solution‐processed OFET geometry because organic semiconductors are vulnerable to chemical damage by solvents. In this work, high‐resolution, damage‐free patterning of a dopant layer is developed to fabricate short‐channel OFETs with a dopant interlayer inserted at the contacts. The fabricated OFETs exhibit high mobility exceeding 10 cm2 V?1 s?1 together with a reasonably low contact resistance, allowing for high frequency operation at 38 MHz. In addition, a diode‐connected OFET shows a rectifying capability of up to 78 MHz at an applied voltage of 5 V. This shows that an OFET can respond to the very high frequency band, which is beneficial for long‐distance wireless communication.  相似文献   

2.
A low contact resistance achieved on top‐gated organic field‐effect transistors by using coplanar and pseudo‐staggered device architectures, as well as the introduction of a dopant layer, is reported. The top‐gated structure effectively minimizes the access resistance from the contact to the channel region and the charge‐injection barrier is suppressed by doping of iron(III)trichloride at the metal/organic semiconductor interface. Compared with conventional bottom‐gated staggered devices, a remarkably low contact resistance of 0.1–0.2 kΩ cm is extracted from the top‐gated devices by the modified transfer line method. The top‐gated devices using thienoacene compound as a semiconductor exhibit a high average field‐effect mobility of 5.5–5.7 cm2 V?1 s?1 and an acceptable subthreshold swing of 0.23–0.24 V dec?1 without degradation in the on/off ratio of ≈109. Based on these experimental achievements, an optimal device structure for a high‐performance organic transistor is proposed.  相似文献   

3.
A high‐performance naphthalene diimide (NDI)‐based conjugated polymer for use as the active layer of n‐channel organic field‐effect transistors (OFETs) is reported. The solution‐processable n‐channel polymer is systematically designed and synthesized with an alternating structure of long alkyl substituted‐NDI and thienylene–vinylene–thienylene units (PNDI‐TVT). The material has a well‐controlled molecular structure with an extended π‐conjugated backbone, with no increase in the LUMO level, achieving a high mobility and highly ambient stable n‐type OFET. The top‐gate, bottom‐contact device shows remarkably high electron charge‐carrier mobility of up to 1.8 cm2 V?1 s?1 (Ion/Ioff = 106) with the commonly used polymer dielectric, poly(methyl methacrylate) (PMMA). Moreover, PNDI‐TVT OFETs exhibit excellent air and operation stability. Such high device performance is attributed to improved π–π intermolecular interactions owing to the extended π‐conjugation, apart from the improved crystallinity and highly interdigitated lamellar structure caused by the extended π–π backbone and long alkyl groups.  相似文献   

4.
A new high‐performing small molecule n‐channel semiconductor based on diketopyrrolopyrrole (DPP), 2,2′‐(5,5′‐(2,5‐bis(2‐ethylhexyl)‐3,6‐dioxo‐2,3,5,6‐tetrahydropyrrolo[3,4‐c]pyrrole‐1,4‐diyl)bis(thiophene‐5,2‐diyl))bis(methan‐1‐yl‐1‐ylidene)dimalononitrile (DPP‐T‐DCV), is successfully synthesized. The frontier molecular orbitals in this designed structure are elaborately tuned by introducing a strong electron‐accepting functionality (dicyanovinyl). The well‐defined lamellar structures of the crystals display a uniform terrace step height corresponding to a molecular monolayer in the solid‐state. As a result of this tuning and the remarkable crystallinity derived from the conformational planarity, organic field‐effect transistors (OFETs) based on dense‐packed solution‐processed single‐crystals of DPP‐T‐DCV exhibit an electron mobility (μe) up to 0.96 cm2 V?1 s?1, one of the highest values yet obtained for DPP derivative‐based n‐channel OFETs. Polycrystalline OFETs show promise (with an μe up to 0.64 cm2 V?1 s?1) for practical utility in organic device applications.  相似文献   

5.
Delocalized singlet biradical hydrocarbons hold promise as new semiconducting materials for high‐performance organic devices. However, to date biradical organic molecules have attracted little attention as a material for organic electronic devices. Here, this work shows that films of a crystallized diphenyl derivative of s‐indacenodiphenalene (Ph2‐IDPL) exhibit high ambipolar mobilities in organic field‐effect transistors (OFETs). Furthermore, OFETs fabricated using Ph2‐IDPL single crystals show high hole mobility (μh = 7.2 × 10?1 cm2 V?1 s?1) comparable to that of amorphous Si. Additionally, high on/off ratios are achieved for Ph2‐IDPL by inserting self‐assembled mono­layer of alkanethiol between the semiconducting layer and the Au electrodes. These findings open a door to the application of ambipolar OFETs to organic electronics such as complementary metal oxide semiconductor logic circuits.  相似文献   

6.
Organic field‐effect transistors suffer from ultra‐high operating voltages in addition to their relative low mobility. A general approach to low‐operating‐voltage organic field‐effect transistors (OFETs) using donor/acceptor buffer layers is demonstrated. P‐type OFETs with acceptor molecule buffer layers show reduced operating voltages (from 60–100 V to 10–20 V), with mobility up to 0.19 cm2 V?1 s?1 and an on/off ratio of 3 × 106. The subthreshold slopes of the devices are greatly reduced from 5–12 V/decade to 1.68–3 V/decade. This favorable combination of properties means that such OFETs can be operated successfully at voltages below 20 V (|VDS| ≤ 20 V, |VGS| ≤ 20 V). This method also works for n‐type semiconductors. The reduced operating voltage and low pinch‐off voltage contribute to the improved ordering of the polycrystalline films, reduced grain boundary resistance, and steeper subthreshold slopes.  相似文献   

7.
A donor–acceptor (D–A) semiconducting copolymer, PDPP‐TVT‐29, comprising a diketopyrrolopyrrole (DPP) derivative with long, linear, space‐separated alkyl side‐chains and thiophene vinylene thiophene (TVT) for organic field‐effect transistors (OFETs) can form highly π‐conjugated structures with an edge‐on molecular orientation in an as‐spun film. In particular, the layer‐like conjugated film morphologies can be developed via short‐term thermal annealing above 150 °C for 10 min. The strong intermolecular interaction, originating from the fused DPP and D–A interaction, leads to the spontaneous self‐assembly of polymer chains within close proximity (with π‐overlap distance of 3.55 Å) and forms unexpectedly long‐range π‐conjugation, which is favorable for both intra‐ and intermolecular charge transport. Unlike intergranular nanorods in the as‐spun film, well‐conjugated layers in the 200 °C‐annealed film can yield more efficient charge‐transport pathways. The granular morphology of the as‐spun PDPP‐TVT‐29 film produces a field‐effect mobility (μ FET) of 1.39 cm2 V?1 s?1 in an OFET based on a polymer‐treated SiO2 dielectric, while the 27‐Å‐step layered morphology in the 200 °C‐annealed films shows high μ FET values of up to 3.7 cm2 V?1 s?1.  相似文献   

8.
Meniscus‐guided coating (MGC) is mainly applicable on the soluble organic semiconductors with strong π–π overlap for achieving single‐crystalline organic thin films and high‐performance organic field‐effect‐transistors (OFETs). In this work, four elementary factors including shearing speed (v), solute concentration (c), deposition temperature (T), and solvent boiling point (Tb) are unified to analyze crystal growth behavior in the meniscus‐guided coating. By carefully varying and studying these four key factors, it is confirmed that v is the thickness regulation factor, while c is proportional to crystal growth rate. The MGC crystal growth rate is also correlated to latent heat (L) of solvents and deposition temperature in an Arrhenius form. The latent heat of solvents is proportional to Tb. The OFET channels grown by the optimized MGC parameters show uniform crystal morphology (Roughness Rq < 0.25 nm) with decent carrier mobilities (average µ = 5.88 cm2 V?1 s?1 and highest µ = 7.68 cm2 V?1 s?1). The studies provide a generalized formula to estimate the effects of these fabrication parameters, which can serve as crystal growth guidelines for the MGC approach. It is also an important cornerstone towards scaling up the OFETs for the sophisticated organic circuits or mass production.  相似文献   

9.
Self‐assembled monolayer (SAM) is usually applied to tune the interface between dielectric and active layer of organic field‐effect transistors (OFETs) and other organic electronics, a time‐saving, direct patterning approach of depositing well‐ordered SAMs is highly desired. Here, a new direct patterning method of SAMs by stamp printing or roller printing with special designed stamps is introduced. The chemical structures of the paraffin hydrocarbon molecules and the tail groups of SAMs have allowed to use their attractive van der Waals force for the direct patterning of SAMs. Different SAMs including alkyl and fluoroalkyl silanes or phosphonic acids are used to stamp onto different dielectric surfaces and are characterized by water contact angle, atomic force microscopy, X‐ray diffraction, and attenuated total reflectance Fourier transform infrared. The p‐type dinaphtho[2,3‐b:2′,3′‐f]thieno[3,2‐b]thiophene (DNTT) and n‐type F16CuPc OFETs show competitive mobility as high as 3 and 0.018 cm2 V?1 s?1, respectively. This stamp printing method also allows to deposit different SAMs on certain regions of same substrate, and the complementary inverter consists of both p‐type and n‐type transistors whose threshold voltages are tuned by stamp printing SAMs and shows a gain higher than 100. The proposed stamp or roller printing method can significantly reduce the deposition time and compatible with the roll‐to‐roll fabrication.  相似文献   

10.
Highly stretchable, high‐mobility, and free‐standing coplanar‐type all‐organic transistors based on deformable solid‐state elastomer electrolytes are demonstrated using ionic thermoplastic polyurethane (i‐TPU), thereby showing high reliability under mechanical stimuli as well as low‐voltage operation. Unlike conventional ionic dielectrics, the i‐TPU electrolyte prepared herein has remarkable characteristics, i.e., a large specific capacitance of 5.5 µF cm?2, despite the low weight ratio (20 wt%) of the ionic liquid, high transparency, and even stretchability. These i‐TPU‐based organic transistors exhibit a mobility as high as 7.9 cm2 V?1 s?1, high bendability (Rc, radius of curvature: 7.2 mm), and good stretchability (60% tensile strain). Moreover, they are suitable for low‐voltage operation (VDS = ?1.0 V, VGS = ?2.5 V). In addition, the electrical characteristics such as mobility, on‐current, and threshold voltage are maintained even in the concave and convex bending state (bending tensile strain of ≈3.4%), respectively. Finally, free‐standing, fully stretchable, and semi‐transparent coplanar‐type all‐organic transistors can be fabricated by introducing a poly(3,4‐ethylenedioxythiophene):polystyrene sulfonic acid layer as source/drain and gate electrodes, thus achieving low‐voltage operation (VDS = ?1.5 V, VGS = ?2.5 V) and an even higher mobility of up to 17.8 cm2 V?1 s?1. Moreover, these devices withstand stretching up to 80% tensile strain.  相似文献   

11.
In this study, polymer‐based organic field‐effect transistors (OFETs) that exhibit alignment‐induced mobility enhancement, very small device‐to‐device variation, and high operational stability are successfully fabricated by a simple coating method of semiconductor solutions on highly hydrophobic nanogrooved surfaces. The highly hydrophobic nanogrooved surfaces (water contact angle >110°) are effective at inducing unidirectional alignment of polymer backbone structures with edge‐on orientation and are advantageous for realizing high operational stability because of their water‐repellent nature. The dewetting of the semiconductor solution is a critical problem in the thin film formation on highly hydrophobic surfaces. Dewetting during spin coating is suppressed by surrounding the hydrophobic regions with hydrophilic ones under appropriate designs. For the OFET array with an aligned terrace‐phase active layer of poly(2,5‐bis(3‐hexadecylthiophene‐2‐yl)thieno[3,2‐b]thiophene), the hole mobility in the saturation regime of 30 OFETs with channel current direction parallel to the nanogrooves is 0.513 ± 0.018 cm2 V?1 s?1, which is approximately double that of the OFETs without nanogrooves, and the intrinsic operational stability is comparable to the operational stability of amorphous‐silicon field‐effect transistors. In other words, alignment‐induced mobility enhancement and high operational stability are successfully achieved with very small device‐to‐device variation. This coating method should be a promising means of fabricating high‐performance OFETs.  相似文献   

12.
A series of dialkylated dithienothiophenoquinoids ( DTTQ s), end‐functionalized with dicyanomethylene units and substituted with different alkyl chains, are synthesized and characterized. Facile one‐pot synthesis of the dialkylated DTT core is achieved, which enables the efficient realization of DTTQ s as n‐type active semiconductors for solution‐processable organic field effect transistors (OFETs). The molecular structure of hexyl substituted DTTQ‐6 is determined via single‐crystal X‐ray diffraction, revealing DTTQ is a very planar core. The DTTQ cores form a “zig‐zag” linking layer and the layers stack in a “face‐to‐face” arrangement. The very planar core structure, short core stacking distance (3.30 Å), short intermolecular S? N distance (2.84 Å), and very low lying lowest unoccupied molecular orbital energy level of ?4.2 eV suggest that DTTQ s should be excellent electron transport candidates. The physical and electrochemical properties as well as OFETs performance and thin film morphologies of these new DTTQ s are systematically studied. Using a solution‐shearing method, DTTQ‐11 exhibits n‐channel transport with the highest mobility of up to 0.45 cm2 V?1 s?1 and a current ON/OFF ratio (I ON/I OFF) greater than 105. As such, DTTQ‐11 has the highest electron mobility of any DTT‐based small molecule semiconductors yet discovered combined with excellent ambient stability. Within this family, carrier mobility magnitudes are correlated with the alkyl chain length of the side chain substituents of DTTQ s.  相似文献   

13.
The synthesis of a new tetrathiafulvalene derivative with an electron‐withdrawing benzothiadiazole moiety and its use in thin‐film organic field‐effect transistors (OFETs) are reported. Compared to reported OFETs with other TTF derivatives, a high hole mobility up to 0.73 cm2 V?1 s?1, low off‐current and high on/off ratio up to 105 are demonstrated. In addition, the developed OFETs show fast responsiveness toward chemical vapors of DECP (diethyl chlorophosphate) or POCl3 which are simulants of phosphate‐based nerve agents. In contrast to previously reported OFET‐based sensors, off‐current is used as the output signal, which increases quickly upon exposure to either DECP or POCl3 vapors. High sensitivity is demonstrated toward DECP and POCl3 vapors, with concentrations as low as 10 ppb being detected. These OFETs are also responsive to TNT vapor. The sensing mechanisms for the new type of OFET are discussed.  相似文献   

14.
By changing the packing motif of the conjugated cores and the thin‐film microstructures, unipolar organic semiconductors may be converted into ambipolar materials. A combined experimental and theoretical investigation is conducted on the thin‐film organic field‐effect transistors (OFETs) of three organic semiconductors that have the same conjugated core structure of s‐indaceno[1,2‐b:5,6‐b′]dithiophene‐4,9‐dione but with different n‐alkyl groups. The optical and electrochemical measurements suggest that the three organic semiconductors have very similar energy levels; however, their OFETs exhibit dramatically different transport characteristics. Transistors based on compound 1a or 1c show ambipolar transport properties, while those based on compound 1b show p‐type unipolar behavior. Specifically, compound 1c is characterized as a good ambipolar semiconductor with the highest electron mobility of 0.22 cm2 V?1 s?1 and the highest hole mobility of 0.03 cm2 V?1 s?1. Complementary metal oxide semiconductor (CMOS) inverters incorporated with compound 1c show sharp inversions with high gains above 50. Theoretical investigations reveal that the drastic difference in the transport properties of the three materials is due to the difference in their molecular packing and film microstructures.  相似文献   

15.
A newly synthesized high‐k polymeric insulator for use as gate dielectric layer for organic field‐effect transistors (OFETs) obtained by grafting poly(methyl methacrylate) (PMMA) in poly(vinylidene fluoride‐trifluoroethylene) (P(VDF‐TrFE)) via atom transfer radical polymerization transfer is reported. This material design concept intents to tune the electrical properties of the gate insulating layer (capacitance, leakage current, breakdown voltage, and operational stability) of the high‐k fluorinated polymer dielectric without a large increase in operating voltage by incorporating an amorphous PMMA as an insulator. By controlling the grafted PMMA percentage, an optimized P(VDF‐TrFE)‐g‐PMMA with 7 mol% grafted PMMA showing reasonably high capacitance (23–30 nF cm?2) with low voltage operation and negligible current hysteresis is achieved. High‐performance low‐voltage‐operated top‐gate/bottom‐contact OFETs with widely used high mobility polymer semiconductors, poly[[2,5‐bis(2‐octyldodecyl)‐2,3,5,6‐tetrahydro‐3,6‐dioxopyrrolo [3,4‐c]pyrrole‐1,4‐diyl]‐alt‐[[2,2′‐(2,5‐thiophene)bis‐thieno(3,2‐b)thiophene]‐5,5′‐diyl]] (DPPT‐TT), and poly([N,N′‐bis(2‐octyldodecyl)‐naphthalene‐1,4,5,8‐bis(dicarboximide)‐2,6‐diyl]‐alt‐5,5′‐(2,2′‐bithiophene)) are demonstrated here. DPPT‐TT OFETs with P(VDF‐TrFE)‐g‐PMMA gate dielectrics exhibit a reasonably high field‐effect mobility of over 1 cm2 V?1 s?1 with excellent operational stability.  相似文献   

16.
This work innovatively develops a dual solution‐shearing method utilizing the semiconductor concentration region close to the solubility limit, which successfully generates large‐area and high‐performance semiconductor monolayer crystals on the millimeter scale. The monolayer crystals with poly(methyl methacrylate) encapsulation show the highest mobility of 10.4 cm2 V?1 s?1 among the mobility values in the reported solution‐processed semiconductor monolayers. With similar mobility to multilayer crystals, light is shed on the charge accumulation mechanism in organic field‐effect transistors (OFETs), where the first layer on interface bears the most carrier transport task, and the other above layers work as carrier suppliers and encapsulations to the first layer. The monolayer crystals show a very low dependency on channel directions with a small anisotropic ratio of 1.3. The positive mobility–temperature correlation reveals a thermally activated carrier transport mode in the monolayer crystals, which is different from the band‐like transport mode in multilayer crystals. Furthermore, because of the direct exposure of highly conductive channels, the monolayer crystal based OFETs can sense ammonia concentrations as low as 10 ppb. The decent sensitivity indicates the monolayer crystals are potential candidates for sensor applications.  相似文献   

17.
Ambipolar organic field‐effect transistors (OFETs) are produced, based on organic heterojunctions fabricated by a two‐step vacuum‐deposition process. Copper phthalocyanine (CuPc) deposited at a high temperature (250 °C) acts as the first (p‐type component) layer, and hexadecafluorophthalocyaninatocopper (F16CuPc) deposited at room temperature (25 °C) acts as the second (n‐type component) layer. A heterojunction with an interpenetrating network is obtained as the active layer for the OFETs. These heterojunction devices display significant ambipolar charge transport with symmetric electron and hole mobilities of the order of 10–4 cm2 V–1 s–1 in air. Conductive channels are at the interface between the F16CuPc and CuPc domains in the interpenetrating networks. Electrons are transported in the F16CuPc regions, and holes in the CuPc regions. The molecular arrangement in the heterojunction is well ordered, resulting in a balance of the two carrier densities responsible for the ambipolar electrical characteristics. The thin‐film morphology of the organic heterojunction with its interpenetrating network structure can be controlled well by the vacuum‐deposition process. The structure of interpenetrating networks is similar to that of the bulk heterojunction used in organic photovoltaic cells, therefore, it may be helpful in understanding the process of charge collection in organic photovoltaic cells.  相似文献   

18.
The influence of the interface of the dielectric SiO2 on the performance of bottom‐contact, bottom‐gate poly(3‐alkylthiophene) (P3AT) field‐effect transistors (FETs) is investigated. In particular, the operation of transistors where the active polythiophene layer is directly spin‐coated from chlorobenzene (CB) onto the bare SiO2 dielectric is compared to those where the active layer is first spin‐coated then laminated via a wet transfer process such that the film/air interface of this film contacts the SiO2 surface. While an apparent alkyl side‐chain length dependent mobility is observed for films directly spin‐coated onto the SiO2 dielectric (with mobilities of ≈10?3 cm2 V?1 s?1 or less) for laminated films mobilities of 0.14 ± 0.03 cm2 V?1 s?1 independent of alkyl chain length are recorded. Surface‐sensitive near edge X‐ray absorption fine structure (NEXAFS) spectroscopy measurements indicate a strong out‐of‐plane orientation of the polymer backbone at the original air/film interface while much lower average tilt angles of the polymer backbone are observed at the SiO2/film interface. A comparison with NEXAFS on crystalline P3AT nanofibers, as well as molecular mechanics and electronic structure calculations on ideal P3AT crystals suggest a close to crystalline polymer organization at the P3AT/air interface of films from CB. These results emphasize the negative influence of wrongly oriented polymer on charge carrier mobility and highlight the potential of the polymer/air interface in achieving excellent “out‐of‐plane” orientation and high FET mobilities.  相似文献   

19.
The study of monolayer organic field‐effect transistors (MOFETs) provides an effective way to investigate the intrinsic charge transport of semiconductors. To date, the research based on organic monolayers on polymeric dielectrics lays far behind that on inorganic dielectrics and the realization of a bulk‐like carrier mobility on pure polymer dielectrics is still a formidable challenge for MOFETs. Herein, a quasi‐monolayer coverage of pentacene film with orthorhombic phase is grown on the poly (amic acid) (PAA) dielectric layer. More significantly, charge density redistribution occurs at the interface between the pentacene and PAA caused by electron transfer from pentacene to the PAA dielectric layer, which is verified by theoretical simulations and experiments. As a consequence, an enhanced hole accumulation layer is formed and pentacene‐based MOFETs on pure polymer dielectrics exhibit bulk‐like carrier mobilities of up to 13.7 cm2 V?1 s?1 from the saturation region at low VGS, 9.1 cm2 V?1 s?1 at high VGS and 7.6 cm2 V?1 s?1 from the linear region, which presents one of the best results of previously reported MOFETs so far and indicates that the monolayer semiconductor growing on pure polymer dielectric could produce highly efficient charge transport.  相似文献   

20.
Systematic creation of polymeric semiconductors from novel building blocks is critical for improving charge transport properties in organic field‐effect transistors (OFETs). A series of ultralow‐bandgap polymers containing thienoisoindigo (TIIG) as a thiophene analogue of isoindigo (IIG) is synthesized. The UV‐Vis absorptions of the TIIG‐based polymers ( PTIIG‐T , PTIIG‐Se , and PTIIG‐DT ) exhibit broad bands covering the visible to near‐infrared range of up to 1600 nm. All the polymers exhibit unipolar p‐channel operations with regard to gold contacts. PTIIG‐DT with centrosymmetric donor exhibits a maximum mobility of 0.20 cm2 V?1 s?1 under gold contacts, which is higher than those of the other polymers containing axisymmetric donors. Intriguingly, OFETs fabricated with aluminum electrodes show ambipolar charge transport with hole and electron mobilities of up to 0.28 ( PTIIG‐DT ) and 0.03 ( PTIIG‐T ) cm2 V?1 s?1, respectively. This is a record value for the hitherto reported TIIG‐based OFETs. The finding demonstrates that TIIG‐based polymers can potentially function as either unipolar or ambipolar semiconductors without reliance on the degree of electron affinity of the co‐monomers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号