首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We investigate the effects of interfacial dielectric layers (IDLs) on the electrical properties of top‐gate In‐Ga‐Zn‐oxide (IGZO) thin film transistors (TFTs) fabricated at low temperatures below 200°C, using a target composition of In:Ga:Zn = 2:1:2 (atomic ratio). Using four types of TFT structures combined with such dielectric materials as Si3N4 and Al2O3, the electrical properties are analyzed. After post‐annealing at 200°C for 1 hour in an O2 ambient, the sub‐threshold swing is improved in all TFT types, which indicates a reduction of the interfacial trap sites. During negative‐bias stress tests on TFTs with a Si3N4 IDL, the degradation sources are closely related to unstable bond states, such as Si‐based broken bonds and hydrogen‐based bonds. From constant‐current stress tests of Id = 3 µA, an IGZO‐TFT with heat‐treated Si3N4 IDL shows a good stability performance, which is attributed to the compensation effect of the original charge‐injection and electron‐trapping behavior.  相似文献   

2.
Inspired by the asymmetric structure and responsive ion transport in biological ion channels, organic/inorganic hybrid artificial nanochannels exhibiting pH‐modulated ion rectification and light‐regulated ion flux have been constructed by introducing conductive polymer into porous nanochannels. The hybrid nanochannels are achieved by partially modifying alumina (Al2O3) nanopore arrays with polypyrrole (PPy) layer using electrochemical polymerization, which results in an asymmetric component distribution. The protonation and deprotonation of Al2O3 and PPy upon pH variation break the surface charge continuity, which contributes to the pH‐tunable ion rectification. The ionic current rectification ratio is affected substantially by the pH value of electrolyte and the pore size of nanochannels. Furthermore, the holes (positive charges) in PPy layer induced by the cooperative effect of light and protons are used to regulate the ionic flux through the nanochannels, which results in a light‐responsive ion current. The magnitude of responsive ionic current could be amplified by optimizing this cooperation. This new type of stimuli‐responsive PPy/Al2O3 hybrid nanochannels features advantages of unique optical and electric properties from conducting PPy and high mechanical performance from porous Al2O3 membrane, which provide a platform for creating smart nanochannels system.  相似文献   

3.
This paper demonstrates the effect of fluoride‐based plasma treatment on the performance of Al2O3/AlGaN/GaN metal‐insulator‐semiconductor heterostructure field effect transistors (MISHFETs) with a T‐shaped gate length of 0.20 μm. For the fabrication of the MISHFET, an Al2O3 layer as a gate dielectric was deposited using atomic layer deposition, which greatly decreases the gate leakage current, followed by the deposition of the silicon nitride layer. The silicon nitride layer on the gate foot region was then selectively removed through a reactive ion etching technique using CF4 plasma. The etching process was continued for a longer period of time even after the complete removal of the silicon nitride layer to expose the Al2O3 gate dielectric layer to the plasma environment. The thickness of the Al2O3 gate dielectric layer was slowly reduced during the plasma exposure. Through this plasma treatment, the device exhibited a threshold voltage shift of 3.1 V in the positive direction, an increase of 50 mS/mm in trans conductance, a degraded off‐state performance and a larger gate leakage current compared with that of the reference device without a plasma treatment.  相似文献   

4.
High‐performance, air‐stable, p‐channel WSe2 top‐gate field‐effect transistors (FETs) using a bilayer gate dielectric composed of high‐ and low‐k dielectrics are reported. Using only a high‐k Al2O3 as the top‐gate dielectric generally degrades the electrical properties of p‐channel WSe2, therefore, a thin fluoropolymer (Cytop) as a buffer layer to protect the 2D channel from high‐k oxide forming is deposited. As a result, a top‐gate‐patterned 2D WSe2 FET is realized. The top‐gate p‐channel WSe2 FET demonstrates a high hole mobility of 100 cm2­ V?1 s?1 and a ION/IOFF ratio > 107 at low gate voltages (VGS ca. ?4 V) and a drain voltage (VDS) of ?1 V on a glass substrate. Furthermore, the top‐gate FET shows a very good stability in ambient air with a relative humidity of 45% for 7 days after device fabrication. Our approach of creating a high‐k oxide/low‐k organic bilayer dielectric is advantageous over single‐layer high‐k dielectrics for top‐gate p‐channel WSe2 FETs, which will lead the way toward future electronic nanodevices and their integration.  相似文献   

5.
The electronic band alignment of the Zn(O,S)/Cu(In,Ga)Se2 interface in high‐efficiency thin‐film solar cells was derived using X‐ray photoelectron spectroscopy, ultra‐violet photoelectron spectroscopy, and inverse photoemission spectroscopy. Similar to the CdS/Cu(In,Ga)Se2 system, we find an essentially flat (small‐spike) conduction band alignment (here: a conduction band offset of (0.09 ± 0.20) eV), allowing for largely unimpeded electron transfer and forming a likely basis for the success of high‐efficiency Zn(O,S)‐based chalcopyrite devices. Furthermore, we find evidence for multiple bonding environments of Zn and O in the Zn(O,S) film, including ZnO, ZnS, Zn(OH)2, and possibly ZnSe. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
Flexible energy storage devices play a pivotal role in realizing the full potential of flexible electronics. This work presents high‐performance, all‐solid‐state, flexible supercapacitors by employing an innovative multilevel porous graphite foam (MPG). MPGs exhibit superior properties, such as large specific surface area, high electric conductivity, low mass density, high loading efficiency of pseudocapacitive materials, and controlled corrugations for accommodating mechanical strains. When loaded with pseudocapacitive manganese oxide (Mn3O4), the MPG/Mn3O4 (MPGM) composites achieve a specific capacitance of 538 F g?1 (1 mV s?1) and 260 F g?1 (1 mV s?1) based on the mass of pure Mn3O4 and entire electrode composite, respectively. Both are among the best of Mn3O4‐based supercapacitors. The MPGM is mechanically robust and can go through 1000 mechanical bending cycles with only 1.5% change in electric resistance. When integrated as all‐solid‐state symmetric supercapacitors, they offer a full cell specific capacitance as high as 53 F g?1 based on the entire electrode and retain 80% of capacitance after 1000 continuous mechanical bending cycles. Furthermore, the all‐solid‐state flexible supercapacitors are incorporated with strain sensors into self‐powered flexible devices for detection of both coarse and fine motions on human skins, i.e., those from finger bending and heart beating.  相似文献   

7.
Earth abundant kesterite solar cells have achieved 7–10% cell efficiency mostly by processes that separate the film deposition and the annealing into two sequential steps. In contrast, co‐evaporation onto a high‐temperature substrate, demonstrating previous success in chalcopyrite (Cu(In,Ga)Se2) solar cells, allows real‐time composition control. Chalcopyrite research widely supports the model that Cu‐rich growth conditions assist grain growth, and subsequently, the endpoint composition can be adjusted back to Cu‐poor via monitoring the surface emissivity of the film. On the basis of the same intentions, the recent development of co‐evaporated kesterite (Cu2ZnSnSe4) adapts the concept and achieves 9.2% efficiency. To understand the effect of growth strategies, this study examines the phase evolution, grain morphology, and device performance in Cu‐rich growth and other strategies (Zn‐rich and close‐to‐stoichiometric). By characterizing films obtained from interrupted depositions and also interpreting the variation in surface emission during growths, this study found a subtle hindrance in the reaction of CuxSey and ZnSe possibly caused by the volatile nature of SnSex. The hindrance explains why, distinctive from chalcopyrite, little difference in grain size is observed between kesterite films made by Cu‐rich versus Zn‐rich growth at these deposition rates. At last, a Zn‐rich growth 9.1% device, certified by the National Renewable Energy Laboratory, is presented, which equals the performance of the previously‐reported Cu‐rich growth device. At the present stage, we believe the Cu‐rich and Zn‐rich growth share equal promise for the optimization of kesterite solar cells. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
A fully transparent non‐volatile memory thin‐film transistor (T‐MTFT) is demonstrated. The gate stack is composed of organic ferroelectric poly(vinylidene fluoride‐trifluoroethylene) [P(VDF‐TrFE)] and oxide semiconducting Al‐Zn‐Sn‐O (AZTO) layers, in which thin Al2O3 is introduced between two layers. All the fabrication processes are performed below 200 °C on the glass substrate. The transmittance of the fabricated device was more than 90% at the wavelength of 550 nm. The memory window obtained in the T‐MTFT was 7.5 V with a gate voltage sweep of ?10 to 10 V, and it was still 1.8 V even with a lower voltage sweep of ?6 to 6 V. The field‐effect mobility, subthreshold swing, on/off ratio, and gate leakage currents were obtained to be 32.2 cm2 V?1 s?1, 0.45 V decade?1, 108, and 10?13 A, respectively. All these characteristics correspond to the best performances among all types of non‐volatile memory transistors reported so far, although the programming speed and retention time should be more improved.  相似文献   

9.
This study highlights the potential of atomic layer deposited In2O3 as a highly transparent and conductive oxide (TCO) layer in Cu(In,Ga)Se2 (CIGSe) solar cells. It is shown that the efficiency of solar cells which use Zn‐Sn‐O (ZTO) as an alternative buffer layer can be increased by employing In2O3 as a TCO because of a reduction of the parasitic absorption in the window layer structure, resulting in 1.7 mA/cm2 gain in short circuit current density (Jsc). In contrast, a degradation of device properties is observed if the In2O3 TCO is combined with the conventional CdS buffer layer. The estimated improvement for large‐scale modules is discussed. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
Atomic‐layer‐deposited aluminium oxide (Al2O3) is applied as rear‐surface‐passivating dielectric layer to passivated emitter and rear cell (PERC)‐type crystalline silicon (c‐Si) solar cells. The excellent passivation of low‐resistivity p‐type silicon by the negative‐charge‐dielectric Al2O3 is confirmed on the device level by an independently confirmed energy conversion efficiency of 20·6%. The best results are obtained for a stack consisting of a 30 nm Al2O3 film covered by a 200 nm plasma‐enhanced‐chemical‐vapour‐deposited silicon oxide (SiOx) layer, resulting in a rear surface recombination velocity (SRV) of 70 cm/s. Comparable results are obtained for a 130 nm single‐layer of Al2O3, resulting in a rear SRV of 90 cm/s. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
Atomically thin 2D layered transition metal dichalcogenides (TMDs) have been extensively studied in recent years because of their appealing electrical and optical properties. Here, the fabrication of ReS2 field‐effect transistors is reported via the encapsulation of ReS2 nanosheets in a high‐κ Al2O3 dielectric environment. Low‐temperature transport measurements allow to observe a direct metal‐to‐insulator transition originating from strong electron–electron interactions. Remarkably, the photodetectors based on ReS2 exhibit gate‐tunable photoresponsivity up to 16.14 A W?1 and external quantum efficiency reaching 3168%, showing a competitive device performance to those reported in graphene, MoSe2, GaS, and GaSe‐based photodetectors. This study unambiguously distinguishes ReS2 as a new candidate for future applications in electronics and optoelectronics.  相似文献   

12.
Zn batteries potentially offer the highest energy density among aqueous batteries that are inherently safe, inexpensive, and sustainable. However, most cathode materials in Zn batteries suffer from capacity fading, particularly at a low current rate. Herein, it is shown that the ZnCl2 “water‐in‐salt” electrolyte (WiSE) addresses this capacity fading problem to a large extent by facilitating unprecedented performance of a Zn battery cathode of Ca0.20V2O5?0.80H2O. Upon increasing the concentration of aqueous ZnCl2 electrolytes from 1 m to 30 m, the capacity of Ca0.20V2O5?0.80H2O rises from 296 mAh g?1 to 496 mAh g?1; its absolute working potential increases by 0.4 V, and most importantly, at a low current rate of 50 mA g?1, that is, C/10; its capacity retention increases from 8.4% to 51.1% over 100 cycles. Ex situ characterization results point to the formation of a new ready‐to‐dissolve phase on the electrode in the dilute electrolyte. The results demonstrate that the Zn‐based WiSE may provide the underpinning platform for the applications of Zn batteries for stationary grid‐level storage.  相似文献   

13.
In this work, for the first time, the addition of aluminum oxide nanostructures (Al2O3 NSs) grown by glancing angle deposition (GLAD) is investigated on an ultrathin Cu(In,Ga)Se2 device (400 nm) fabricated using a sequential process, i.e., post‐selenization of the metallic precursor layer. The most striking observation to emerge from this study is the alleviation of phase separation after adding the Al2O3 NSs with improved Se diffusion into the non‐uniformed metallic precursor due to the surface roughness resulting from the Al2O3 NSs. In addition, the raised Na concentration at the rear surface can be attributed to the increased diffusion of Na ion facilitated by Al2O3 NSs. The coverage and thickness of the Al2O3 NSs significantly affects the cell performance because of an increase in shunt resistance associated with the formation of Na2SeX and phase separation. The passivation effect attributed to the Al2O3 NSs is well studied using the bias‐EQE measurement and J–V characteristics under dark and illuminated conditions. With the optimization of the Al2O3 NSs, the remarkable enhancement in the cell performance occurs, exhibiting a power conversion efficiency increase from 2.83% to 5.33%, demonstrating a promising method for improving ultrathin Cu(In,Ga)Se2 devices, and providing significant opportunities for further applications.  相似文献   

14.
A novel application of ethylene‐norbornene cyclic olefin copolymers (COC) as gate dielectric layers in organic field‐effect transistors (OFETs) that require thermal annealing as a strategy for improving the OFET performance and stability is reported. The thermally‐treated N,N′‐ditridecyl perylene diimide (PTCDI‐C13)‐based n‐type FETs using a COC/SiO2 gate dielectric show remarkably enhanced atmospheric performance and stability. The COC gate dielectric layer displays a hydrophobic surface (water contact angle = 95° ± 1°) and high thermal stability (glass transition temperature = 181 °C) without producing crosslinking. After thermal annealing, the crystallinity improves and the grain size of PTCDI‐C13 domains grown on the COC/SiO2 gate dielectric increases significantly. The resulting n‐type FETs exhibit high atmospheric field‐effect mobilities, up to 0.90 cm2 V?1 s?1 in the 20 V saturation regime and long‐term stability with respect to H2O/O2 degradation, hysteresis, or sweep‐stress over 110 days. By integrating the n‐type FETs with p‐type pentacene‐based FETs in a single device, high performance organic complementary inverters that exhibit high gain (exceeding 45 in ambient air) are realized.  相似文献   

15.
Organic/inorganic hybrid templates, i.e., aluminium oxide (Al2O3) nanoparticles grafted with poly(oxyethylene) methacrylate, Al2O3‐POEM, are synthesized via surface‐initiated atom transfer radical polymerization (ATRP), as confirmed by Fourier transform‐infrared spectroscopy (FT‐IR) and thermogravimetric analysis (TGA). Upon combining the Al2O3‐POEM with titanium(IV) isopropoxide (TTIP), hydrophilic TTIP is selectively confined in the hydrophilic POEM chains through hydrogen bonding interactions. Following the calcination at 450 °C and the selective etching of Al2O3 with NaOH, the OM‐TiO2 films with high surface areas, good interconnectivity, and anatase phase are obtained. The solid‐state dye‐sensitized solar cells (ssDSSCs) fabricated with OM‐TiO2 photoelectrodes and a polymerized ionic liquid (PIL) show a high energy conversion efficiency of 7.3% at 100 mW cm?2, which is one of the highest values for ssDSSCs. The high cell performance is due to the well‐organized structure, resulting in improved dye loading, excellent pore filling of electrolyte, enhanced light harvesting, and reduced charge recombination.  相似文献   

16.
Buried electrodes and protection of the semiconductor with a thin passivation layer are used to yield dual‐gate organic transducers. The process technology is scaled up to 150‐mm wafers. The transducers are potentiometric sensors where the detection relies on measuring a shift in the threshold voltage caused by changes in the electrochemical potential at the second gate dielectric. Analytes can only be detected within the Debye screening length. The mechanism is assessed by pH measurements. The threshold voltage shift depends on pH as ΔVth = (Ctop/Cbottom) × 58 mV per pH unit, indicating that the sensitivity can be enhanced with respect to conventional ion‐sensitive field‐effect transistors (ISFETs) by adjusting the ratio of the top and bottom gate capacitances. Remaining challenges and opportunities are discussed.  相似文献   

17.
We report the development of Cd‐free buffers by atomic layer deposition for chalcopyrite‐based solar cells. Zn(O,S) buffer layers were prepared by atomic layer deposition on sequentially grown Cu(In,Ga)(Se,S)2 absorbers from Bosch Solar CISTech GmbH. An externally certified efficiency of 16.1% together with an open circuit voltage of 612 mV were achieved on laboratory scale devices. Stability tests show that the behavior of the ALD‐Zn(O,S)‐buffered devices can be characterized as stable only showing a minor drift of the open circuit voltage and the fill factor. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
Thin film transistors (TFTs) with bottom gate and staggered electrodes using atomic layer deposited Al2O3 as gate insulator and radio frequency sputtered In–Ga–Zn Oxide (IGZO) as channel layer are fabricated in this work. The performances of IGZO TFTs with different deposition temperature of Al2O3 are investigated and compared. The experiment results show that the Al2O3 deposition temperature play an important role in the field effect mobility, Ion/Ioff ratio, sub-threshold swing and bias stability of the devices. The TFT with a 250 °C Al2O3 gate insulator shows the best performance; specifically, field effect mobility of 6.3 cm2/Vs, threshold voltage of 5.1 V, Ion/Ioff ratio of 4×107, and sub-threshold swing of 0.56 V/dec. The 250 °C Al2O3 insulator based device also shows a substantially smaller threshold voltage shift of 1.5 V after a 10 V gate voltage is stressed for 1 h, while the value for the 200, 300 and 350 °C Al2O3 insulator based devices are 2.3, 2.6, and 1.64 V, respectively.  相似文献   

19.
We report a new certified world‐record efficiency for thin‐film Cu(In,Ga)Se2‐based photovoltaic sub‐modules of 17.4% (aperture area). The record efficiency of the 16 cm2, monolithically integrated, sub‐module has been independently confirmed by Fraunhofer ISE. The record device is the result of extensive co‐optimization of all processing steps. During the optimization process, strong focus has been put on the scalability of processes to cost‐effective mass production, as reflected, for example, in Cu(In,Ga)Se2 deposition time and substrate temperature. Device manufacturing as well as results of electrical and material characterization is discussed. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
Current lithium‐ion battery technology is gearing towards meeting the robust demand of power and energy requirements for all‐electric transportation without compromising on the safety, performance, and cycle life. The state‐of‐charge (SOC) of a Li‐ion cell can be a macroscopic indicator of the state‐of‐health of the battery. The microscopic origin of the SOC relates to the local lithium content in individual electrode particles and the effective ability of Li‐ions to transport or shuttle between the redox couples through the cell geometric boundaries. Herein, micrometer‐resolved Raman mapping of a transition‐metal‐based oxide positive electrode, Li1‐x(NiyCozAl1‐y‐z)O2, maintained at different SOCs, is shown. An attempt has been made to link the underlying changes to the composition and structural integrity at the individual particle level. Furthermore, an SOC distribution at macroscopic length scale of the electrodes is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号