首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 790 毫秒
1.
Bottom‐up assembly can organize simple building blocks into complex architectures for light manipulation. The optical properties of self‐assembled polycrystalline barium carbonate/silica double helices are studied using fluorescent Fourier and Mueller matrix microscopy. Helices doped with fluorescein direct light emission along the long axis of the structure. Furthermore, light transmission measured normal and parallel to the long axis exhibits twist sense‐specific circular retardance and waveguiding, respectively, although the measurements suffer from depolarization. The helices thus integrate highly directional emission with enantiomorph‐specific polarization. This optical response emerges from the arrangement of nanoscopic mineral crystallites in the microscopic helix, and demonstrates how bottom‐up assembly can achieve ordering across multiple length scales to form complex functional materials.  相似文献   

2.
3.
Self‐assembled monolayers (SAMs) are fundamental building blocks of molecular electronics and find numerous applications in organic (opto)electronic devices. Their properties are decisively determined by their response to electric fields, which are either applied externally (e.g., when biasing devices) or originate from within the monolayer itself in case it consists of dipolar molecules (which are used to tune charge‐injection barriers). This response is typically described by the dielectric constant of the monolayer. In this work it is explicitly show that there is no “general” dielectric constant that simultaneously applies to both cases. This is first derived on the basis of density‐functional theory (DFT) calculations for substituted biphenyl‐thiol SAMs at varying packing densities. Depolarization effects, which play a crucial role for the dielectric properties of the monolayers, are subsequently analyzed on the basis of packing‐dependent charge rearrangements. Finally, the DFT results are rationalized using an electrostatic model. In this context, the importance of finite‐size effects is highlighted and a connection between the macroscopic dielectric properties and the molecular polarizability is established providing a monolayer equivalent to the Clausius–Mossotti relationship. This allows deriving general trends for the packing‐density dependent dielectric response of monolayers to both external and internal electric fields.  相似文献   

4.
Rechargeable battery cells having a liquid electrolyte require a separator permeable to the electrolyte between the two electrodes. Because the electrodes change their volume during charge and discharge, the porous separators are flexible polymers with an electronic energy gap Eg large enough for the Fermi levels of the two electrodes to be within it. In this work, a porous film of self‐assembled SiO2 nanoparticles is developed as the separator for a Li‐ion battery with a liquid electrolyte. This coating does not require the plasticity of a polymer membrane and has the required large Eg. If adsorbed water is removed from the SiO2 surface, the nanoparticles bond to one another and to an oxide cathode to form a plastic self‐assembling porous layer into which the liquid electrolyte can penetrate. The Li‐ion batteries with a LiCoO2 cathode coated with SiO2 as a separator show similar performance to cells with a traditional polypropylene separator and improved cyclability with a reduced volume of liquid electrolyte owing to the electrolyte wetting properties of the SiO2 nanoparticles. The SiO2 nanoparticles are easy to prepare, cheap, and environmentally friendly.  相似文献   

5.
We describe the suitability of ultra‐high vacuum scanning tunneling microscopy (UHV‐STM) based nanolithography by using highly ordered monomolecular organic films, called self‐assembled monolayers (SAMs), as ultrathin resists. Organothiol‐type SAMs such as hexadecanethiol (SH–(CH2)15–CH3) and N‐biphenylthiol (SH–(C6H6)2–NO2) monolayers have been prepared by immersion on gold films and Au(111) single crystals. Organosilane‐type SAMs such as octadecyltrichlorosilane (SiCl3–(CH2)17–CH3) monolayers have been prepared on hydroxylated Si(100) surfaces as well as hydroxylated chromium film surfaces. Dense line patterns have been written by UHV‐STM in constant current mode for various tunneling parameters (gap voltage, tunneling current, scan speed, and orientation) and transferred into the underlying substrate by wet etch techniques. The etched structures have been analyzed by means of scanning electron microscopy (SEM) and atomic force microscopy (AFM). Best resolution has been achieved without etch transfer for a 20 nm × 20 nm square written in hexadecanethiol/Au(111) with an edge definition of about 5 nm. Etch transfer of the STM nanopatterns in Au films resulted in 55 nm dense line patterns (15 nm deep) mainly broadened by the isotropic etch characteristic, while 35 nm wide and 30 nm deep dense line patterns written in octadecyltrichlorosilane/Si(100) and anisotropically etched into Si(100) could be achieved.  相似文献   

6.
Two stages in the rational redesign of a peptide‐based, self‐assembling fiber (SAF) are described. The SAF system comprises two peptides designed to form an offset α‐helical coiled‐coil heterodimer. The “sticky‐ends” are complementary and promote longitudinal assembly. Alone, the two peptides are unstructured, but co‐assemble upon mixing to form α‐helical fibrils, which bundle to form fibers 40–50 nm wide and tens of micrometers long. Assembly is controllable and occurs at pH 7 in water, making SAFs a potential scaffold for 3D cell culture. The purposes of the redesigns were 1) to investigate the fiber‐thickening process, and 2) to increase fiber stability for potential biological and biomedical applications. First, mutations were made to the original peptide designs to increase fibril–fibril interactions and so produce thicker and more‐stable fibers. The second iteration aimed to increase the primary peptide–peptide interactions by increasing the overlap in the offset dimer and so promote the initial step in fiber formation. As judged by circular dichroism spectroscopy and transmission electron microscopy, both iterations improved fiber assembly and stability: the critical peptide concentration for assembly improved from 60 μM to 4 μM ; the midpoint of thermal unfolding increased from 22 °C to 65 °C; and the salt tolerance improved from 75 mM to greater than 250 mM KCl. These improvements bring closer applications of the SAF system under physiological conditions, for example as a biocompatible material for 3D cell culture. In addition, ordered surface features were observed in the second‐ and third‐generation fibers compared with the original design. This indicates improved internal order in the redesigned fibers. In turn, this suggests a molecular mechanism for the improved stability and sheds light on the fiber‐assembly process.  相似文献   

7.
New thermoplastic liquid‐crystalline elastomers have been synthesized using the telechelic principle of microphase separation in triblock copolymers. The large central block is made of a main‐chain nematic polymer renowned for its large spontaneous elongation along the nematic director. The effective crosslinking is established by small terminal blocks formed of terphenyl moieties, which phase separate into semicrystalline micelles acting as multifunctional junction points of the network. The resulting transient network retains the director alignment and shows a significant shape‐memory effect, characteristic and exceeding that of covalently bonded nematic elastomers. Its plasticity at temperatures above the nematic–isotropic transition allows drawing thin well‐aligned fibers from the melt. The fibers have been characterized and their thermal actuator behavior—reversible contraction of heating and elongation on cooling—has been investigated.  相似文献   

8.
A self‐assembled three phase epitaxial nanocomposite film is grown consisting of ≈3 nm diameter fcc metallic Cu nanorods within square prismatic SrO rocksalt nanopillars in a Sr(Ti,Cu)O3‐δ perovskite matrix. Each phase has an epitaxial relation to the others. The core–shell‐matrix structures are grown on SrTiO3 substrates and can also be integrated onto Si using a thin SrTiO3 buffer. The structure is made by pulsed laser deposition in vacuum from a SrTi0.75Cu0.25O3 target, and formed as a result of the limited solubility of Cu in the perovskite matrix. Wet etching removes the 3 nm diameter Cu nanowires leaving porous SrO pillars. The three‐phase nanocomposite film is used as a substrate for growing a second epitaxial nanocomposite consisting of CoFe2O4 spinel pillars in a BiFeO3 perovskite matrix, producing dramatic effects on the structure and magnetic properties of the CoFe2O4. This three‐phase vertical nanocomposite provides a complement to the well‐known two‐phase nanocomposites, and may offer a combination of properties of three different materials as well as additional avenues for strain‐mediated coupling within a single film.  相似文献   

9.
The fabrication of surface‐enhanced Raman spectroscopy (SERS) substrates that are optimized for use with specific laser wavelength–analyte combinations is addressed. In order to achieve large signal enhancement, temporal stability, and reproducibility over large substrate areas at low cost, only self‐assembly and templating processes are employed. The resulting substrates consist of arrays of gold nanospheres with controlled diameter and spacing, properties that dictate the optical response of the structure. Tunability of the extended surface plasmon resonance is observed in the range of 520–1000 nm. It is demonstrated that the enhancement factor is maximized when the surface plasmon resonance is red‐shifted with respect to the SERS instrument laser line. Despite relying on self‐organization, site‐to‐site enhancement factor variations smaller than 10% are obtained.  相似文献   

10.
Quantum mechanical and classical atomistic computational methods are used to simulate the chain‐length dependence of depolarization effects in S(CH2)n?1CH3 and S(CH2)n?1COOH self‐assembled monolayers on gold (111) surface. These calculations show that due to weak cooperative effects, the electrostatic properties of alkanethiol monolayers are well described by the gas phase dipole moments of the molecules. However, depolarization in monolayers with the molecules carrying head‐ and tail‐group dipoles, such as COOH‐terminated monolayers, strongly depends on the degree of intramolecular dipole coupling. Thus the electrostatic properties of self‐assembled monolayers can be engineered by changing the length of the aliphatic spacer between the polar groups. The transition from strong to weak coupling regime was found to be accompanied by the change in the sign of the asymptotic value of electrostatic potential above the surface of the monolayers and hence in the sign of the metal work function change. Therefore, the use of weakly polarizable spacers between the polar groups inside the molecules forming the SAM is beneficial for accessing a wider range of work‐function changes.  相似文献   

11.
Assembly of 2D MXene sheets into a 3D macroscopic architecture is highly desirable to overcome the severe restacking problem of 2D MXene sheets and develop MXene‐based functional materials. However, unlike graphene, 3D MXene macroassembly directly from the individual 2D sheets is hard to achieve for the intrinsic property of MXene. Here a new gelation method is reported to prepare a 3D structured hydrogel from 2D MXene sheets that is assisted by graphene oxide and a suitable reductant. As a supercapacitor electrode, the hydrogel delivers a superb capacitance up to 370 F g?1 at 5 A g?1, and more promisingly, demonstrates an exceptionally high rate performance with the capacitance of 165 F g?1 even at 1000 A g?1. Moreover, using controllable drying processes, MXene hydrogels are transformed into different monoliths with structures ranging from a loosely organized porous aerogel to a dense solid. As a result, a 3D porous MXene aerogel shows excellent adsorption capacity to simultaneously remove various classes of organic liquids and heavy metal ions while the dense solid has excellent mechanical performance with a high Young's modulus and hardness.  相似文献   

12.
13.
This work describes n‐type self‐assembled monolayer field‐effect transistors (SAMFETs) based on a perylene derivative which is covalently fixed to an aluminum oxide dielectric via a phosphonic acid linker. N‐type SAMFETs spontaneously formed by a single layer of active molecules are demonstrated for transistor channel length up to 100 μm. Highly reproducible transistors with electron mobilities of 1.5 × 10?3 cm2 V?1 s?1 and on/off current ratios up to 105 are obtained. By implementing n‐type and p‐type transistors in one device, a complimentary inverter based solely on SAMFETs is demonstrated for the first time.  相似文献   

14.
Self‐assembled monolayers (SAMs) are molecular assemblies that spontaneously form on an appropriate substrate dipped into a solution of an active surfactant in an organic solvent. Organic field‐effect transistors are described, built on an SAM made of bifunctional molecules comprising a short alkyl chain linked to an oligothiophene moiety that acts as the active semiconductor. The SAM is deposited on a thin oxide layer (alumina or silica) that serves as a gate insulator. Platinum–titanium source and drain electrodes (either top‐ or bottom‐contact configuration) are patterned by using electron‐beam (e‐beam) lithography, with a channel length ranging between 20 and 1000 nm. In most cases, ill‐defined current–voltage (I–V) curves are recorded, attributed to a poor electrical contact between platinum and the oligothiophene moiety. However, a few devices offer well‐defined curves with a clear saturation, thus allowing an estimation of the mobility: 0.0035 cm2 V–1 s–1 for quaterthiophene and 8 × 10–4 cm2 V–1 s–1 for terthiophene. In the first case, the on–off ratio reaches 1800 at a gate voltage of –2 V. Interestingly, the device operates at room temperature and very low bias, which may open the way to applications where low consumption is required.  相似文献   

15.
Controlling charge doping in organic semiconductors represents one of the key challenges in organic electronics that needs to be solved in order to optimize charge transport in organic devices. Charge transfer or charge separation at the molecule/substrate interface can be used to dope the semiconductor (substrate) surface or the active molecular layers close to the interface, and this process is referred to as surface‐transfer doping. By modifying the Au(111) substrate with self‐assembled monolayers (SAMs) of aromatic thiols with strong electron‐withdrawing trifluoromethyl (CF3) functional groups, significant electron transfer from the active organic layers (copper(II) phthalocyanine; CuPc) to the underlying CF3‐SAM near the interface is clearly observed by synchrotron photoemission spectroscopy. The electron transfer at the CuPc/CF3‐SAM interface leads to an electron accumulation layer in CF3‐SAM and a depletion layer in CuPc, thereby achieving p‐type doping of the CuPc layers close to the interface. In contrast, methyl (CH3)‐terminated SAMs do not display significant electron transfer behavior at the CuPc/CH3‐SAM interface, suggesting that these effects can be generalized to other organic‐SAM interfaces. Angular‐dependent near‐edge X‐ray absorption fine structure (NEXAFS) measurements reveal that CuPc molecules adopt a standing‐up configuration on both SAMs, suggesting that interface charge transfer has a negligible effect on the molecular orientation of CuPc on various SAMs.  相似文献   

16.
Despite tremendous efforts, tissue engineered constructs are restricted to thin, simple tissues sustained only by diffusion. The most significant barrier in tissue engineering is insufficient vascularization to deliver nutrients and metabolites during development in vitro and to facilitate rapid vascular integration in vivo. Tissue engineered constructs can be greatly improved by developing perfusable microvascular networks in vitro in order to provide transport that mimics native vascular organization and function. Here a microfluidic hydrogel is integrated with a self‐assembling pro‐vasculogenic co‐culture in a strategy to perfuse microvascular networks in vitro. This approach allows for control over microvascular network self‐assembly and employs an anastomotic interface for integration of self‐assembled microvascular networks with fabricated microchannels. As a result, transport within the system shifts from simple diffusion to vessel supported convective transport and extra‐vessel diffusion, thus improving overall mass transport properties. This work impacts the development of perfusable prevascularized tissues in vitro and ultimately tissue engineering applications in vivo.  相似文献   

17.
Many recent experimental studies have demonstrated that the deposition of a self‐assembled monolayer (SAM) made of polar molecules on a metal surface can significantly modulate its work function and hence the barrier for hole and electron injection in optoelectronic devices. The permanent dipole moment associated with the backbone of the molecules plays a key role in defining the amplitude and direction of the work‐function shift. We illustrate here via quantum‐chemical calculations performed on model systems that the dipole moment of molecules is significantly reduced going from the isolated state to the SAM. Such depolarization effects that are most often neglected thus reduce the work‐function shift and have to be taken in account to control and understand charge‐injection barriers in devices at a quantitative level.  相似文献   

18.
Charge transfer processes between donor–acceptor complexes and metallic electrodes are at the heart of novel organic optoelectronic devices such as solar cells. Here, a combined approach of surface‐sensitive microscopy, synchrotron radiation spectroscopy, and state‐of‐the‐art ab initio calculations is used to demonstrate the delicate balance that exists between intermolecular and molecule–substrate interactions, hybridization, and charge transfer in model donor–acceptor assemblies at metal‐organic interfaces. It is shown that charge transfer and chemical properties of interfaces based on single component layers cannot be naively extrapolated to binary donor–acceptor assemblies. In particular, studying the self‐assembly of supramolecular nanostructures on Cu(111), composed of fluorinated copper‐phthalocyanines (F16CuPc) and diindenoperylene (DIP), it is found that, in reference to the associated single component layers, the donor (DIP) decouples electronically from the metal surface, while the acceptor (F16CuPc) suffers strong hybridization with the substrate.  相似文献   

19.
The self‐assembly of sodium dodecyl benzene sulphonate (SDBS) functionalized graphene sheets (GSs) and horseradish peroxidase (HRP) by electrostatic attraction into novel hierarchical nanostructures in aqueous solution is reported. Data from scanning electron microscopy, high‐resolution transmission electron microscopy, and X‐ray diffraction demonstrate that the HRP–GSs bionanocomposites feature ordered hierarchical nanostructures with well‐dispersed HRP intercalated between the GSs. UV‐vis and infrared spectra indicate the native structure of HRP is maintained after the assembly, implying good biocompatibility of SDBS‐functionalized GSs. Furthermore, the HRP–GSs composites are utilized for the fabrication of enzyme electrodes (HRP–GSs electrodes). Electrochemical measurements reveal that the resulting HRP–GSs electrodes display high electrocatalytic activity to H2O2 with high sensitivity, wide linear range, low detection limit, and fast amperometric response. These desirable electrochemical performances are attributed to excellent biocompatibility and superb electron transport efficiency of GSs as well as high HRP loading and synergistic catalytic effect of the HRP–GSs bionanocomposites toward H2O2. As graphene can be readily non‐covalently functionalized by “designer” aromatic molecules with different electrostatic properties, the proposed self‐assembly strategy affords a facile and effective platform for the assembly of various biomolecules into hierarchically ordered bionanocomposites in biosensing and biocatalytic applications.  相似文献   

20.
Self‐assembled monolayers (SAMs) of a conjugated bithiophenic system connected to an alkanethiol chain have been deposited on gold surface. The electroactive bithiophenic system involves a 3,4‐ethylenedioxythiophene (EDOT) unit and a thiophene ring on which an alkanethiol is attached at the internal β‐position via a sulfide linkage. The analysis of the structure of the SAMs by IR spectroscopy, ellipsometry, contact angle measurement and X‐ray photoelectron spectroscopy (XPS) provides consistent results indicating compact monolayers in which the alkyl linkers are arranged in an almost vertical fashion while the bithiophenic‐conjugated systems are essentially parallel to the surface. Cyclic voltammetry shows that application of a few potential scans to SAMs immersed in a medium containing only a supporting electrolyte leads to the typical electropolymerization curves while the CV of the electrooxized monolayer exhibits a reversible cyclic voltammogram characteristic of a stable electroactive extended conjugated system. The characterization of the electropolymerized monolayers by IR spectroscopy, ellipsometry, contact angle measurement, and XPS indicates compact monolayers. The analysis of the current voltage characteristics of the monolayers by conducting AFM before and after electrooxidation shows that the enhancement of the effective conjugation resulting from electropolymerization leads to a significant increase of the transport properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号