首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 0 毫秒
1.
The development of efficient near‐infrared (NIR) emitting material is of current focus. Donor–acceptor (D–A) architecture has been proved to be an effective strategy to obtain narrow energy gap. Herein, a D–A‐type NIR fluorescent compound 2,3‐bis(4′‐(diphenylamino)‐[1,1′‐biphenyl]‐4‐yl)fumaronitrile (TPATCN) is synthesized and fully characterized. As revealed by theoretical calculations and photophysical experiments, TPATCN exerts the advantages of the relatively large dipole moment of the charge transfer state and a certain degree of orbital overlap of the local excited state. A highly mixed or hybrid local and charge transfer excited state might occur to simultaneously achieve both a large fraction of singlet formation and a high quantum efficiency in D–A system. TPATCN exhibits strong NIR fluorescence with the corresponding thin film quantum efficiency of 33% and the crystal efficiency of 72%. Remarkably, the external quantum efficiency of nondoped NIR organic light‐emitting diode (OLED) reaches 2.58% and remains fairly constant over a range of 100–300 mA cm?2, which is among the best results for NIR OLEDs reported so far.  相似文献   

2.
Red/near‐infrared dyes are highly demanded for biological applications but most of them are far from satisfactory. In this work, a series of red/near‐infrared fluorophores based on electron‐withdrawing benzo[1,2‐b:4,5‐b′]dithiophene 1,1,5,5‐tetraoxide (BDTO) are synthesized and characterized. They possess both aggregation‐induced emission, and hybridized local and charge‐transfer characteristics. Crystallographic, spectroscopic, electrochemical and computational results reveal that the oxidation of benzo[1,2‐b:4,5‐b′]dithiophene to BDTO can endow the fluorophores with greatly red‐shifted emission, enhanced emission efficiency, reduced energy levels, enlarged two‐photon absorption cross section, and increased reactive oxygen species generation efficiency. The nanoparticles fabricated with a near‐infrared fluorophore TPA‐BDTO show high photostability and biocompatibility with good performance in targeted photodynamic ablation of cancer cells and two‐photon fluorescence imaging of intravital mouse brain vasculature.  相似文献   

3.
The design of square‐planar Pt(II) complexes with highly efficient solid‐state near infrared (NIR) luminescence for electroluminescence is attractive but challenging. This study presents the fine‐turning of excited‐state properties and application of a series of isoquinolinyl pyrazolate Pt(II) complexes that are modulated by steric demanding substituents. It reveals that the bulky substituents do not always disfavor metallophilic Pt···Pt interactions. Instead, π–π stacking among chelates, which are fine‐tuned by the associated substituents, also exerts strong influence to the metal‐metal‐to‐ligand charge transfer (MMLCT) transition character. Theoretical calculations indicate that Pt···Pt contacts become more relevant in the trimers rather than the dimers, especially in their T1 states, associated with a change from mixed 3LC/3MLCT transition in the monomer/dimer to mixed 3LC/3MMLCT transition character in the trimer. Electroluminescence devices affording intense deep‐red/NIR emission (near 670 nm) with unprecedentedly high external quantum efficiency over 30% are demonstrated. This work provides deep insights into formation MMLCT transition of square‐planar Pt(II) complexes and efficient molecular design for deep‐red/NIR electroluminescence.  相似文献   

4.
5.
Actualizing highly efficient solution‐processed thermally activated delayed fluorescent (TADF) organic light‐emitting diodes (OLEDs) at high brightness becomes significant to the popularization of purely organic electroluminescence. Herein, a highly soluble emitter benzene‐1,3,5‐triyltris((4‐(9,9‐dimethylacridin‐10(9H)‐yl)phenyl)methanone was developed, yielding high delayed fluorescence rate (kTADF > 105 s?1) ascribed to the multitransition channels and tiny singlet–triplet splitting energy (ΔEST ≈ 32.7 meV). The triplet locally excited state is 0.38 eV above the lowest triplet charge‐transfer state, assuring a solely thermal equilibrium route for reverse intersystem crossing. Condensed state solvation effect unveils a hidden “trade‐off”: the reverse upconversion and triplet concentration quenching processes can be promoted but with a reduced radiative rate from the increased dopant concentration and the more polarized surroundings. Striking a delicate balance, corresponding vacuum‐evaporated and solution‐processed TADF‐OLEDs realized maximum external quantum efficiencies (EQEs) of ≈26% and ≈22% with extremely suppressed efficiency roll‐off. Notably, the wet‐processed one achieves to date the highest EQEs of 20.7%, 18.5%, 17.1%, and 13.6%, among its counterparts at the luminance of 1000, 3000, 5000, and 10 000 cd m?2, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号