首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Increasing sunlight conversion efficiency is a key driver for on‐going solar electricity cost reduction. For photovoltaic conversion, the approach most successful in increasing conversion efficiency is to split sunlight into spectral bands and direct each band to a dedicated solar cell of an appropriate energy bandgap to convert this band efficiently. In this work, we demonstrate conversion of sunlight to electricity in a solar collector with an efficiency value above 40% for the first time, using a small 287‐cm2 aperture area test stand, notably equipped with commercial concentrator solar cells. We use optical band‐pass filtering to capture energy that is normally wasted by commercial GaInP/GaInAs/Ge triple junction cells and convert this normally wasted energy using a separate Si cell with higher efficiency than physically possible in the original device. The 287‐cm2 aperture area sunlight‐concentrating converter demonstrating this independently confirmed efficiency is a prototype for a large photovoltaic power tower system, where sunlight is reflected from a field of sun‐tracking heliostats to a dense photovoltaic array mounted on a central tower. In such systems, improved efficiency not only reduces costs by increasing energy output for a given investment in heliostats and towers but also reduces unwanted heat generation at the central tower. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
Human skin shows self‐adaptive temperature regulation through both enhanced heat dissipation in high temperature environments and depressed heat dissipation in cold environments. Inspired by such thermal regulation processes, an interfacial material system with self‐adaptive temperature regulation in the solar‐driven interfacial evaporation system, which can exhibit automatic temperature oscillation to enable pyroelectricity generation while producing water vapor, is reported. The bioinspired interface system is designed with the combination of a thermochromism‐based temperature regulator consisting of tungsten‐doped vanadium dioxide nanoparticles and a polymeric pyroelectric thin film of polyvinylidene fluoride. Under the simulated solar illumination with power density of 1.1 kW m?2, the bioinspired interfacial evaporation system achieves a self‐adaptive temperature oscillation with the maximum temperature difference of ≈7 °C and this system can simultaneously generate water vapor as well as electricity with an evaporation efficiency of 71.43% and a maximum output electrical power density of 104 µW m?2, respectively. The study demonstrates a design of thermal management at the interface of solar‐driven evaporation system to exhibit a self‐adaptive temperature oscillation and offers an alternative approach for the multifunctional harvesting of solar energy.  相似文献   

3.
In this study radiant light from the sun is used by a hybrid thermoelectric (TE) solar collector and a compound parabolic concentrator (CPC) to generate electricity and thermal energy. The hybrid TE solar collector system described in this report is composed of transparent glass, an air gap, an absorber plate, TE modules, a heat sink to cool the water, and a storage tank. Incident solar radiation falls on the CPC, which directs and reflects the radiation to heat up the absorber plate, creating a temperature difference across the TE modules. The water, which absorbs heat from the hot TE modules, flows through the heat sink to release its heat. The results show that the electrical power output and the conversion efficiency depend on the temperature difference between the hot and cold sides of the TE modules. A maximum power output of 1.03 W and a conversion efficiency of 0.6% were obtained when the temperature difference was 12°C. The thermal efficiency increased as the water flow rate increased. The maximum thermal efficiency achieved was 43.3%, corresponding to a water flow rate of 0.24 kg/s. These experimental results verify that using a TE solar collector with a CPC to produce both electrical power and thermal energy seems to be feasible. The thermal model and calculation method can be applied for performance prediction.  相似文献   

4.
In the quest to reduce the levelized cost of energy, recent concentrated photovoltaics innovations have striven to increase the solar cell conversion efficiency. Another approach aims at concentrating more light on the solar cell in order to reduce its share of the energy cost. We propose new cell structures that are tailored for high conversion efficiency at solar concentration exceeding 1000 suns, with a minimum amount of heat generated. These designs are composed of multiple junctions (3, 4, and 5) of materials lattice matched to gallium arsenide (GaAs) with bandgaps at or above that of GaAs. Simulations that include thermal effects and electrical resistance effects are used to predict the performances of the proposed designs under high concentrations. A relative cost analysis shows a reduction in electricity cost when using these designs compared with the state of the art triple‐junction solar cell. Further cost reduction schemes using these proposed designs are discussed. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
We analyzed the interface characteristics of Zn‐based thin‐film buffer layers formed by a sulfur thermal cracker on a Cu(In,Ga)Se2 (CIGS) light‐absorber layer. The analyzed Zn‐based thin‐film buffer layers are processed by a proposed method comprising two processes — Zn‐sputtering and cracker‐sulfurization. The processed buffer layers are then suitable to be used in the fabrication of highly efficient CIGS solar cells. Among the various Zn‐based film thicknesses, an 8 nm–thick Zn‐based film shows the highest power conversion efficiency for a solar cell. The band alignment of the buffer/CIGS was investigated by measuring the band‐gap energies and valence band levels across the depth direction. The conduction band difference between the near surface and interface in the buffer layer enables an efficient electron transport across the junction. We found the origin of the energy band structure by observing the chemical states. The fabricated buffer/CIGS layers have a structurally and chemically distinct interface with little elemental inter‐diffusion.  相似文献   

6.
Hybrid photovoltaic/thermal (PV/T) solar systems provide a simultaneous conversion of solar radiation into electricity and heat. In these devices, the PV modules are mounted together with heat recovery units, by which a circulating fluid allows one to cool them down during their operation. An extensive study on water‐cooled PV/T solar systems has been conducted at the University of Patras, where hybrid prototypes have been experimentally studied. In this paper the electrical and thermal efficiencies are given and the annual energy output under the weather conditions of Patras is calculated for horizontal and tilted building roof installation. In addition, the costs of all system parts are included and the cost payback time is estimated. Finally, the methodology of life cycle assessment (LCA) has been applied to perform an energy and environmental assessment of the analysed system. The goal of this study, carried out at the University of Rome ‘La Sapienza’ by means of SimaPro 5·1 software, was to verify the benefits of heat recovery. The concepts and results of this work on energy performance, economic aspects and LCA results of modified PV and water‐cooled PV/T solar systems, give a clear idea of their application advantages. From the results, the most important conclusion is that PV/T systems are cost effective and of better environmental impact compared with standard PV modules. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

7.
A high band‐gap (~1.55 eV) chalcopyrite compound film (CuInGaS2) was synthesized by a precursor solution‐based coating method with an oxidation and a sulfurization heat treatment process. The film revealed two distinct morphologies: a densely packed bulk layer and a rough surface layer. We found that the rough surface is attributed to the formation of Ga deficient CuInGaS2 crystallites. Because of the high band‐gap optical property of the CuInGaS2 absorber film, a solar cell device with this film showed a relatively high open circuit voltage (~787 mV) with a power conversion efficiency of 8.28% under standard irradiation conditions. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
Solar steam generation is regarded as one of the most sustainable techniques for desalination and wastewater treatment. However, there has been a lack of scalable material systems with high efficiency under 1 Sun. A solar steam generation device is designed utilizing crossplane water transport in wood via nanoscale channels and the preferred thermal transport direction is decoupled to reduce the conductive heat loss. A high steam generation efficiency of 80% under 1 Sun and 89% under 10 Suns is achieved. Surprisingly, the crossplanes perpendicular to the mesoporous wood can provide rapid water transport via the pits and spirals. The cellulose nanofibers are circularly oriented around the pits and highly aligned along spirals to draw water across lumens. Meanwhile, the anisotropic thermal conduction of mesoporous wood is utilized, which can provide better insulation than widely used super‐thermal insulator Styrofoam (≈0.03 W m?1 K?1). The crossplane direction of wood exhibits a thermal conductivity of 0.11 W m?1 K?1. The anisotropic thermal conduction redirects the absorbed heat along the in‐plane direction while impeding the conductive heat loss to the water. The solar steam generation device is promising for cost‐effective and large‐scale application under ambient solar irradiance.  相似文献   

9.
Herein, a 2D SnS2 electron transporting layer is reported via self‐assembly stacking deposition for highly efficient planar perovskite solar cells, achieving over 20% power conversion efficiency under AM 1.5 G 100 mW cm?2 light illumination. To the best of the authors' knowledge, this represents the highest efficiency that has so far been reported for perovskite solar cells using a 2D electron transporting layer. The large‐scaled 2D multilayer SnS2 sheet structure triggers a heterogeneous nucleation over the perovskite precursor film. The intermolecular Pb???S interactions between perovskite and SnS2 could passivate the interfacial trap states, which suppress charge recombination and thus facilitate electron extraction for balanced charge transport at interfaces between electron transporting layer/perovskite and hole transporting layer/perovskite. This work demonstrates that 2D materials have great potential for high‐performance perovskite solar cells.  相似文献   

10.
Mass‐adoption of thin‐film silicon (TF‐Si) photovoltaic modules as a renewable energy source can be viable if the cost of electricity production from the module is competitive with conventional energy solutions. Increased module performance (electrical power generated) is an approach to reduce this cost. Progress towards higher conversion efficiencies for ‘champion’ large area modules paves the way for mass‐production module performance to follow. At TEL Solar AG, Trübbach, Switzerland, significant progress in the absolute stabilized module conversion efficiency has been achieved through optimized solar cell design that integrates high‐quality amorphous and microcrystalline TF‐Si‐deposited materials with efficient light management and transparent conductive oxide layers in a tandem MICROMORPH™ module. This letter reports a world record large area (1.43 m2) stabilized module conversion efficiency of 12.34% certified by the European Solar Test Installation; an increase of more than 1.4% absolute compared with the previous record for a TF‐Si triple junction large area module. This breakthrough result generates more than 13.2% stabilized efficiency from each equivalent 1 cm2 of the active area of the full module. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
With PV Thermal panels sunlight is converted into electricity and heat simultaneously. Per unit area the total efficiency of a PVT panel is higher than the sum of the efficiencies of separate PV panels and solar thermal collectors. During the last 20 years research into PVT techniques and concepts has been widespread, but rather scattered. This reflects the number of possible PVT concepts and the accompanying research and development problems, for which it is the general goal to optimise both electrical and thermal efficiency of a device simultaneously. The aspects that can be optimised are, amongst others, the spectral characteristics of the PV cell, its solar absorption and the internal heat transfer between cells and heat‐collecting system. Another important level of optimisation is for the PVT device geometry and the integration into a system. The electricity and heat demand and the temperature level of the heat determine the choice for a certain system set‐up. With an optimal design, PVT systems can supply buildings with 100% renewable electricity and heat in a more cost‐effective manner than separate PV and solar thermal systems and thus contribute to the long‐term international targets on implementation of renewable energy in the built environment. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

12.
Solar steam generation is achieved by localized heating system using various floating photothermal materials. However, the steam generation efficiency is hindered by the difficulty in obtaining a photothermal material with ultrathin structure yet sufficient solar spectrum absorption capability. Herein, for the first time, an ultrathin 2D porous photothermal film based on MoS2 nanosheets and single‐walled nanotube (SWNT) films is prepared. The as‐prepared SWNT–MoS2 film exhibits an absorption of more than 82% over the whole solar spectrum range even with an ultrathin thickness of ≈120 nm. Moreover, the SWNT–MoS2 film floating on the water surface can generate a sharp temperature gradient due to the localized heat confinement effect. Meanwhile, the ultrathin and porous structure effectively facilitates the fast water vapor escaping, consequently an impressively high evaporation efficiency of 91.5% is achieved. Additionally, the superior mechanical strength of the SWNT–MoS2 film enables the film to be reused for atleast 20 solar illumination cycles and maintains stable water productivity as well as high salt rejection performance. This rational designed hybrid architecture provides a novel strategy for constructing 2D‐based nanomaterials for solar energy harvesting, chemical separation, and related technologies.  相似文献   

13.
随着我国人口不断增长和经济的飞速发展,淡水资源匮乏的形势日趋严重。海水淡化作为一种开辟新水源的新技术,已经成为世界上公认的解决淡水短缺问题的最佳方案。由于海水淡化成本在很大程度上取决于消耗电力和蒸汽的成本,而沿海地区火电厂低品位的蒸汽较多,如汽轮机做过功的蒸汽,各种废热等等,往往因品味太低无法充分利用,若直接排入大气则会造成极大的浪费,甚至会污染环境。利用火电厂无法利用的废热蒸汽作为动力蒸汽,采用低温多效蒸馏的海水淡化工艺,实施水电联产,即能充分发挥火电厂的优势,又能实现节能环保这一终极工业目标,同时丰富了可贵的淡水资源。  相似文献   

14.
We have designed a new solar thermoelectric cogeneration system consisting of an evacuated tubular solar collector (ETSC) with a parabolic trough concentrator (PTC) and thermoelectric modules (TEMs) to supply both thermal energy and electricity. The main design concepts are (1) the hot side of the TEM is bonded to the solar selective absorber installed in an evacuated glass tube, (2) the cold side of the TEM is also bonded to the heat sink, and (3) the outer circulated water is heated by residual solar energy after TEM generation. We present an example solar thermal simulation based on energy balance and heat transfer as used in solar engineering to predict the electrical conversion efficiency and solar thermal conversion efficiency for different values of parameters such as the solar insolation, concentration ratio, and TEM ZT values.  相似文献   

15.
Fuel cells-the clean and efficient power generators   总被引:1,自引:0,他引:1  
Fuel cell generators ranging from subkilowatt portable power units to multimegawatt stationary power plants are emerging to deliver clean and efficient power using a large variety of gaseous and liquid fuels. This new technology is suitable for producing heat and power for residential, commercial, and industrial customers. The fuel cells produce electricity without combustion and use very few moving parts, typically limited to air blowers, and fuel and/or water pumps. Because of high fuel conversion efficiency, combined heat and power generation flexibility, friendly siting characteristics, negligible environmental emissions, and lower carbon dioxide emissions, fuel cells are considered at the top of the desirable technologies for a broad spectrum of power generation applications. This paper discusses different fuel cell technologies, the various applications, and reviews their commercialization considerations and status  相似文献   

16.
ZnS is a candidate to replace CdS as the buffer layer in Cu(In,Ga)Se2 (CIGS) solar cells for Cd‐free commercial product. However, the resistance of ZnS is too large, and the photoconductivity is too small. Therefore, the thickness of the ZnS should be as thin as possible. However, a CIGS solar cell with a very thin ZnS buffer layer is vulnerable to the sputtering power of the ZnO : Al window layer deposition because of plasma damage. To improve the efficiency of CIGS solar cells with a chemical‐bath‐deposited ZnS buffer layer, the effect of the plasma damage by the sputter deposition of the ZnO : Al window layer should be understood. We have found that the efficiency of a CIGS solar cell consistently decreases with an increase in the sputtering power for the ZnO : Al window layer deposition onto the ZnS buffer layer because of plasma damage. To protect the ZnS/CIGS interface, a bilayer ZnO : Al film was developed. It consists of a 50‐nm‐thick ZnO : Al plasma protection layer deposited at a sputtering power of 50 W and a 100‐nm‐thick ZnO : Al conducting layer deposited at a sputtering power of 200 W. The introduction of a 50‐nm‐thick ZnO : Al layer deposited at 50 W prevented plasma damage by sputtering, resulting in a high open‐circuit voltage, a large fill factor, and shunt resistance. The ZnS/CIGS solar cell with the bilayer ZnO : Al film yielded a cell efficiency of 14.68%. Therefore, the application of bilayer ZnO : Al film to the window layer is suitable for CIGS solar cells with a ZnS buffer layer. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
太阳能发电可分为光发电和热发电两种,其中光发电是不通过热转换直接将太阳光转换成电的方式,也称为光伏发电。太阳能光伏发电是新能源利用的重要领域。文中基于实例分析了屋顶光伏发电系统的大量实际数据,表明了太阳能屋顶光伏发电系统具有良好的社会、经济效益和广阔的发展前景,为今后屋顶光伏发电系统设计和推广提供参考依据。  相似文献   

18.
Direct solar steam generation (DSSG) offers a promising, sustainable, and environmentally friendly solution to the energy and water crisis. In the past decades, DSSG has gained tremendous attention due to its potential applications for clean water production, desalination, wastewater treatment, and electric energy harvesting. Even though the solar–thermal conversion efficiency has approached 100% under 1 sun illumination (1 kW m?2) using various photothermal materials and systems, the optimization of the materials and system structure remains unclear because of the lack of evaluation methods in unity for the output efficiency. In this review, a few key concerns about different dimensional materials and systems that determine the characteristics of DSSG are explored. Quantitative analysis, including calculations and methods for the solar–thermal conversion efficiency, evaporation rate, and energy loss, is employed to evaluate the materials and systems from the point of view of ultimate utilization. This article focuses on the relationship between the system dimension and energy efficiency and notes opportunities for future system design and commercialization of DSSG.  相似文献   

19.
The novel growth of cesium lead halide perovskite thin films, which are prepared through thousand‐layer rapid alternative deposition, is performed by developing an active perovskite film consisting of a layer‐by‐layer structure. This method is considerably more difficult to be implemented from the solution process. The obtained thin film morphology and characteristics are distinguished from that of the traditional a few layers and two‐material codeposition. These alternative deposited perovskites are integrated with vacuum‐deposited carrier‐transporting layers and electrodes, and all vacuum‐sublimed perovskite solar cells exhibit an outstanding power conversion efficiency of 13.0%. The use of these devices for environmental light energy harvesting provides a power conversion efficiency of 33.9% under fluorescent light illumination of 1000 lux.  相似文献   

20.
Quasi type‐II PbSe/PbS quantum dots (QDs) are employed in a solid state high efficiency QD/TiO2 heterojunction solar cell. The QDs are deposited using layer‐by‐layer deposition on a half‐micrometer‐thick anatase TiO2 nanosheet film with (001) exposed facets. Theoretical calculations show that the carriers in PbSe/PbS quasi type‐II QDs are delocalized over the entire core/shell structure, which results in better QD film conductivity compared to PbSe QDs. Moreover, PbS shell permits better stability and facile electron injection from the QDs to the TiO2 nanosheets. To complete the electrical circuit of the solar cell, a Au film is evaporated as a back contact on top of the QDs. This PbSe/PbS QD/TiO2 heterojunction solar cell produces a light to electric power conversion efficiency (η) of 4% with short circuit photocurrent (Jsc) of 17.3 mA/cm2. This report demonstrates highly efficient core/shell near infrared QDs in a QD/TiO2 heterojunction solar cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号