首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The lithium–sulfur (Li–S) battery is regarded as the most promising rechargeable energy storage technology for the increasing applications of clean energy transportation systems due to its remarkable high theoretical energy density of 2.6 kWh kg?1, considerably outperforming today's lithium‐ion batteries. Additionally, the use of sulfur as active cathode material has the advantages of being inexpensive, environmentally benign, and naturally abundant. However, the insulating nature of sulfur, the fast capacity fading, and the short lifespan of Li–S batteries have been hampered their commercialization. In this paper, a functional mesoporous carbon‐coated separator is presented for improving the overall performance of Li–S batteries. A straightforward coating modification of the commercial polypropylene separator allows the integration of a conductive mesoporous carbon layer which offers a physical place to localize dissolved polysulfide intermediates and retain them as active material within the cathode side. Despite the use of a simple sulfur–carbon black mixture as cathode, the Li–S cell with a mesoporous carbon‐coated separator offers outstanding performance with an initial capacity of 1378 mAh g?1 at 0.2 C, and high reversible capacity of 723 mAh g?1, and degradation rate of only 0.081% per cycle, after 500 cycles at 0.5 C.  相似文献   

3.
One of the major challenges to develop high‐performance lithium–oxygen (Li–O2) battery is to find effective cathode catalysts and design porous architecture for the promotion of both oxygen reduction reactions and oxygen evolution reactions. Herein, the synthesis of mesoporous carbon nanocubes as a new cathode nanoarchitecture for Li–O2 batteries is reported. The oxygen electrodes made of mesoporous carbon nanocubes contain numerously hierarchical mesopores and macropores, which can facilitate oxygen diffusion and electrolyte impregnation throughout the electrode, and provide sufficient spaces to accommodate insoluble discharge products. When they are applied as cathode catalysts, the Li–O2 cells deliver discharge capacities of 26 100 mA h g?1 at 200 mA g?1, which is much higher than that of commercial carbon black catalysts. Furthermore, the mesoporous nanocube architecture can also serve as a conductive host structure for other highly efficient catalysts. For instance, the Ru functionalized mesoporous carbon nanocubes show excellent catalytic activities toward oxygen evolution reactions. Li–O2 batteries with Ru functionalized mesoporous carbon nanocube catalysts demonstrate a high charge/discharge electrical energy efficiency of 86.2% at 200 mA g?1 under voltage limitation and a good cycling performance up to 120 cycles at 400 mA g?1 with the curtaining capacity of 1000 mA h g?1.  相似文献   

4.
A copper‐stabilized sulfur‐microporous carbon ( MC‐Cu‐S) composite is synthesized by uniformly dispersing 10% highly electronically conductive Cu nanoparticles into microporous carbon (MC), followed by wet‐impregnating S. In the MC‐Cu‐S composite, the MC host that physically confines S/polysulfides provides free space to accommodate volumetric expansion of S during lithiation, while the Cu nanoparticles that are anchored in the MC further chemically interact with S/polysulfides through bonding between Cu and S/polysulfides. The Cu loading allows the S content to increase from 30 to 50% in the carbon‐S cathode material without scarifying the electrochemical performance in a low‐cost carbonate electrolyte. At a current density of 100 mA g‐1, the MC‐Cu‐S cathode shows that Coulumbic efficiency is close to 100% and capacity maintains more than 600 mAh g‐1 with progressive cycling up to more than 500 cycles. In addition, the Cu nano‐inclusins also enhance the electronic conductivity of the MC‐Cu‐S composite, remarkably increasing the rate capabilities. Even the current density increases 10.0 A g‐1, the MC‐Cu‐S cathode can still deliver a capacity of 200 mAh g‐1. This strategy of stabilization of S with small amount of metal nanoparticles anchored in MC provides an effective approach to improve the cycling stability, Coulumbic efficiency, and S loading for Li–S batteries.  相似文献   

5.
Lithium–oxygen batteries are attracting more and more interest; however, their poor rechargeability and low efficiency remain critical barriers to practical applications. Herein, hierarchical carbon–nitrogen architectures with both macrochannels and mesopores are prepared through an economical and environmentally benign sol–gel route, which show high electrocatalytic activity and stable cyclability over 160 cycles as cathodes for Li–O2 batteries. Such good performance owes to the coexistence of macrochannels and mesopores in C–N hierarchical architectures, which greatly facilitate the Li+ diffusion and electrolyte immersion, as well as provide an effective space for O2 diffusion and O2/Li2O2 conversion. Additionally, the mechanism of oxygen reduction reactions is discussed with the N‐rich carbon materials through first‐principles computations. The lithiated pyridinic N provides excellent O2 adsorption and activation sites, and thus catalyzes the electrode processes. Therefore, hierarchical carbon–nitrogen architectures with both macrochannels and mesopores are promising cathodes for Li–O2 batteries.  相似文献   

6.
Lithium–sulfur batteries with potentially high specific energy are viewed as very promising candidates for next‐generation lightweight and low‐cost rechargeable batteries. However, sulfur‐based cathodes suffer from dissolution of polysulfides causing shuttle effects. Here, in order to confine elemental sulfur and anchor the polysulfides, a novel host that is an inexpensive natural clay mineral, viz., vermiculite is proposed. When compared to regular carbon–sulfur composites, vermiculite–sulfur composites offer promising rate capability and much better cycling stabilities, displaying capacity retentions of ≈89 and ≈93% within 200 cycles at C/2 and 1 C, respectively, and ≈60 % at C/5 within 1000 cycles. Postmortem studies, advanced adsorption tests, density functional theory calculations, and zeta potential measurements in combination with intrinsic characteristics of the natural vermiculite provide insights into the new mechanism. The vermiculite contains naturally present surface cations which show a strong tendency to adsorb Sn2? anions, hence protecting them from dissolution. The excess surface charge is most probably compensated by excess Li+ in the space charge zones which is beneficial for charge transfer and local conductivity. The reported results show that natural clay‐minerals are promising sulfur hosts being able to fixate sulfides via electrical double layer effects, thus enabling high‐performance in lithium–chalcogen batteries.  相似文献   

7.
A vacuum calcination approach is developed to fabricate selenium/carbon composites, which does not require intensive mixing and durable heating such as in commonly used melt‐infusion methods of loading selenium into carbon hosts. Starting from carbon‐coated selenium wires prepared via a wet‐chemical reaction, selenium/carbon tubes are fabricated by a straightforward calcination process. The calcination is conducted in a confined space to reduce the insulating carbon shell under vacuum, and selenium melts but remains a constituting part of the composite. Paired with sodium metal anode, the resultant selenium/carbon tubes deliver a high reversible capacity of 601 and 509 mA h g?1 at 0.2 and 2 C normalized by the mass of selenium, which corresponds to energy and power densities of 860 and 667 Wh kg?1 at 193 and 1770 W kg?1, respectively. Such capacity and rate performance surpasses most typical cathode materials for lithium or sodium (ion) batteries, according to the comparative literature analysis. Moreover, the robust tubular‐like hollow structure of the selenium/carbon composites ensures for impressive capacity retention of more than 90% after 1000 cycles at 20 C.  相似文献   

8.
The cycling stability of high‐sulfur‐loading lithium–sulfur (Li–S) batteries remains a great challenge owing to the exaggerated shuttle problem and interface instability. Despite enormous efforts on design of advanced electrodes and electrolytes, the stability issue raised from current collectors has been rarely concerned. This study demonstrates that rationally designing a 3D carbonaceous macroporous current collector is an efficient and effective “two‐in‐one” strategy to improve the cycling stability of high‐sulfur‐loading Li–S batteries, which is highly versatile to enable various composite cathodes with sulfur loading >3.7 mAh cm?2. The best cycling performance can be achieved upon 950 cycles with a very low decay rate of 0.029%. Moreover, the origin of such a huge enhancement in cycling stability is ascribed to (1) the inhibition of electrochemical corrosion, which severely occurs on the typical Al foil and disables its long‐term sustainability for charge transfer, and (2) the passivation of cathode surface. The role of the chemical resistivity against corrosion and favorable macroscopic porous structure is highlighted for exploiting novel current collectors toward exceptional cycling stability of high‐sulfur‐loading Li–S batteries.  相似文献   

9.
10.
A vertically aligned carbon nanofiber (VACNF) array with unique conically stacked graphitic structure directly grown on a planar Cu current collector (denoted as VACNF/Cu) is used as a high‐porosity 3D host to overcome the commonly encountered issues of Li metal anodes. The excellent electrical conductivity and highly active lithiophilic graphitic edge sites facilitate homogenous coaxial Li plating/stripping around each VACNF and forming a uniform solid electrolyte interphase. The high specific surface area effectively reduces the local current density and suppresses dendrite growth during the charging/discharging processes. Meanwhile, this open nanoscale vertical 3D structure eliminates the volume changes during Li plating/stripping. As a result, highly reversible Li plating/stripping with high coulombic efficiency is achieved at various current densities. A low voltage hysteresis of 35 mV over 500 h in symmetric cells is achieved at 1 mA cm?2 with an areal Li plating capacity of 2 mAh cm?2, which is far superior to the planar Cu current collector. Furthermore, a Li–S battery using a S@PAN cathode and a lithium‐plated VACNF/Cu (VACNF/Cu@Li) anode with slightly higher capacity (2 mAh cm?2) exhibits an excellent rate capability and high cycling stability with no capacity fading over 600 cycles.  相似文献   

11.
Urchin‐shaped NiCo2Se4 (u‐NCSe) nanostructures as efficient sulfur hosts are synthesized to overcome the limitations of lithium–sulfur batteries (LSBs). u‐NCSe provides a beneficial hollow structure to relieve volumetric expansion, a superior electrical conductivity to improve electron transfer, a high polarity to promote absorption of lithium polysulfides (LiPS), and outstanding electrocatalytic activity to accelerate LiPS conversion kinetics. Owing to these excellent qualities as cathode for LSBs, S@u‐NCSe delivers outstanding initial capacities up to 1403 mAh g?1 at 0.1 C and retains 626 mAh g?1 at 5 C with exceptional rate performance. More significantly, a very low capacity decay rate of only 0.016% per cycle is obtained after 2000 cycles at 3 C. Even at high sulfur loading (3.2 mg cm?2), a reversible capacity of 557 mAh g?1 is delivered after 600 cycles at 1 C. Density functional theory calculations further confirm the strong interaction between NCSe and LiPS, and cytotoxicity measurements prove the biocompatibility of NCSe. This work not only demonstrates that transition metal selenides can be promising candidates as sulfur host materials, but also provides a strategy for the rational design and the development of LSBs with long‐life and high‐rate electrochemical performance.  相似文献   

12.
Ultrathin MnO2/graphene oxide/carbon nanotube (G/M@CNT) interlayers are developed as efficient polysulfide‐trapping shields for high‐performance Li–S batteries. A simple layer‐by‐layer procedure is used to construct a sandwiched vein–membrane interlayer of thickness 2 µm and areal density 0.104 mg cm?2 by loading MnO2 nanoparticles and graphene oxide (GO) sheets on superaligned carbon nanotube films. The G/M@CNT interlayer provides a physical shield against both polysulfide shuttling and chemical adsorption of polysulfides by MnO2 nanoparticles and GO sheets. The synergetic effect of the G/M@CNT interlayer enables the production of Li–S cells with high sulfur loadings (60–80 wt%), a low capacity decay rate (?0.029% per cycle over 2500 cycles at 1 C), high rate performance (747 mA h g?1 at a charge rate of 10 C), and a low self‐discharge rate with high capacity retention (93.0% after 20 d rest). Electrochemical impedance spectroscopy, cyclic voltammetry, and scanning electron microscopy observations of the Li anodes after cycling confirm the polysulfide‐trapping ability of the G/M@CNT interlayer and show its potential in developing high‐performance Li–S batteries.  相似文献   

13.
Li–S batteries benefit from numerous advantages such as high theoretical capacity, high energy density, and availability of an abundance of sulfur. However, commercialization of Li–S batteries has been impeded because of low loading amount of active materials and poor cycle performance. Herein, a freestanding bilayer carbon–sulfur (FBCS) cathode is reported with superior electrochemical performance at a high sulfur loading level (3 mg cm?2). The top component of the FBCS cathode is composed of interlacing multiwalled carbon nanotubes (MWCNT) and the bottom component is made up of a mixed layer of sulfur imbedded in MWCNT and N‐doped porous carbon (NPC). The MWCNT layer (top part of FBCS cathode) blocks polysulfide migration from the cathode to the anode, and NPC in the bottom part of the FBCS cathode not only provides spacious active sites but also absorbs polysulfide by the nitrogen functional group. The designed novel FBCS cathode delivered a high initial discharge capacity of 964 and 900 mAh g?1 at 0.5 and 1 C, respectively. It also displayed an excellent capacity retention of 83.1% at 0.5 C and 83.4% at 1 C after 300 cycles.  相似文献   

14.
15.
Rational design of sulfur host materials with high electrical conductivity and strong polysulfides (PS) confinement is indispensable for high‐performance lithium–sulfur (Li–S) batteries. This study presents one type of new polymer material based on main‐chain imidazolium‐based ionic polymer (ImIP) and carbon nanotubes (CNTs); the polymer composites can serve as a precursor of CNT/NPC‐300, in which close coverage and seamless junction of CNTs by N‐doped porous carbon (NPC) form a 3D conductive network. CNT/NPC‐300 inherits and strengthens the advantages of both high electrical conductivity from CNTs and strong PS entrapping ability from NPC. Benefiting from the improved attributes, the CNT/NPC‐300‐57S electrode shows much higher reversible capacity, rate capability, and cycling stability than NPC‐57S and CNTs‐56S. The initial discharge capacity of 1065 mA h g?1 is achieved at 0.5 C with the capacity retention of 817 mA h g?1 over 300 cycles. Importantly, when counter bromide anion in the composite of CNTs and ImIP is metathesized to bis(trifluoromethane sulfonimide), heteroatom sulfur is cooperatively incorporated into the carbon hosts, and the surface area is increased with the promotion of micropore formation, thus further improving electrochemical performance. This provides a new method for optimizing porous properties and dopant components of the cathode materials in Li–S batteries.  相似文献   

16.
17.
Li2MnSiO4/C nanocomposite with hierarchical macroporosity is prepared with poly(methyl methacrylate) (PMMA) colloidal crystals as a sacrificial hard‐template and water‐soluble phenol‐formaldehyde (PF) resin as the carbon source. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analyses confirm that the periodic macropores are ≈400 nm in diameter with 20–40 nm walls comprising Li2MnSiO4/C nanocrystals that produce additional large mesopores (< 30 nm) between the nanocrystals. The nanostructured Li2MnSiO4/C cathode exhibits a high reversible discharge capacity of 200 mAh g?1 at C/10 (16 mA g?1) rate at 1.5–4.8 V at 45 °C. Although the discharge capacity can be further increased on operating at 55 °C, the sample exhibits a relatively fast capacity fade at 55 °C, which can be partially solved by simply narrowing the voltage window to avoid side reactions of the electrolyte. The good performance of the Li2MnSiO4/C cathodes is attributed to the unique macro‐/mesostructure of the silicate coupled with uniform carbon coating.  相似文献   

18.
19.
Hollow nanostructures are one of promising sulfur host materials for lithium–sulfur (Li–S) batteries, but the ineffective contact among discrete particles usually generates overall poor electrical conductivity and low volumetric energy density. A new interfused hollow nitrogen‐doped carbon (HNPC) material, derived from imidazolium‐based ionic polymer (ImIP)‐encapsulated zeolitic imidazolate framework‐8 (ZIF‐8), is reported. A novel method for ZIF‐8 disassembly induced by the decomposition of the ImIP shell is proposed. The unique structural superiority gives the resultant electrodes remarkable cycling stability, high rate capability, and large volumetric energy density. A stable reversible discharge capacity over 562 mA h g?1 at 2 C is achieved after prolonged cycling for 800 cycles and the average capacity decay per cycle is as low as 0.035%. The electrochemical performance achieved greatly surpasses that of ZIF‐8‐derived carbon matrices and conventional nitrogen‐doped carbon materials. This proposed methodology opens a new avenue for the design of hollow‐structured carbon nanoarchitectures with target functionalities.  相似文献   

20.
An evolutionary modification approach, boron doped carbon coating, is initially used to improve the electrochemical properties of electrode materials of lithium‐ion batteries, such as Li3V2(PO4)3, and demonstrates apparent and significant modification effects. Based on the precise analysis of X‐ray photoemission spectroscopy results, Raman spectra, and electrochemical impedance spectroscopy results for various B‐doped carbon coated Li3V2(PO4)3 samples, it is found that, among various B‐doping types (B4C, BC3, BC2O and BCO2), the graphite‐like BC3 dopant species plays a huge role on improving the electronic conductivity and electrochemical activity of the carbon coated layer on Li3V2(PO4)3 surface. As a result, when compared with the bare carbon coated Li3V2(PO4)3, the electrochemical performances of the B‐doped carbon coated Li3V2(PO4)3 electrode with a moderate doping amount are greatly improved. For example, when cycled under 1 C and 20 C in the potential range of 3.0–4.3 V, this sample shows an initial capacity of 122.5 and 118.4 mAh g?1, respectively; after 200 cycles, nearly 100% of the initial capacity is retained. Moreover, the modification effects of B‐doped carbon coating approach are further validated on Li4Ti5O12 anode material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号