共查询到20条相似文献,搜索用时 15 毫秒
1.
采用CFD软件对氦气冲刷螺旋管束的传热特性进行了数值模拟。计算时采用了轴对称简化模型;湍流模拟采用低Re k-ε模型。通过与实验数据对比,发现低Re模型比壁面函数法更适合计算冲刷管束类型的流动。计算结果表明,顺排管束前几层平均Nu高于叉排管束,而深层管平均Nu低于叉排管束;管列距离较大时排列方式对深层管的传热影响很小;管束与边界距离约为管束中心部分氦气流道宽度的一半时,各列传热管传热和氦气出口温度都较为均匀;管束横向位置发生偏移将导致管束内流动、传热出现不均匀。结果对于螺旋管蒸汽发生器设计具有参考意义。 相似文献
2.
Liang Zhao Bofeng Bai Yucheng Hou Ximin Zhang 《International Journal of Heat and Mass Transfer》2003,46(25):4779-4788
The pressure drop and boiling heat transfer characteristics of steam-water two-phase flow were studied in a small horizontal helically coiled tubing once-through steam generator. The generator was constructed of a 9-mm ID 1Cr18Ni9Ti stainless steel tube with 292-mm coil diameter and 30-mm pitch. Experiments were performed in a range of steam qualities up to 0.95, system pressure 0.5-3.5 MPa, mass flux 236-943 kg/m2s and heat flux 0-900 kW/m2. A new two-phase frictional pressure drop correlation was obtained from the experimental data using Chisholm’s B-coefficient method. The boiling heat transfer was found to be dependent on both of mass flux and heat flux. This implies that both the nucleation mechanism and the convection mechanism have the same importance to forced convective boiling heat transfer in a small horizontal helically coiled tube over the full range of steam qualities (pre-critical heat flux qualities of 0.1-0.9), which is different from the situations in larger helically coiled tube where the convection mechanism dominates at qualities typically >0.1. Traditional single parameter Lockhart-Martinelli type correlations failed to satisfactorily correlate present experimental data, and in this paper a new flow boiling heat transfer correlation was proposed to better correlate the experimental data. 相似文献
3.
ExperimentalInvestigationofForcedConvectiveBoilingFlowInstabilitiesinHorizontalHelicallyCoiledTubesL.J.Guo;Z.P.Feng;X.J.Chen(... 相似文献
4.
The effects of using different geometrical parameters with the combination of nanofluid on heat transfer and fluid flow characteristics in a helically coiled tube heat exchanger (HCTHE) are numerically investigated. A CuO nanoparticle with a diameter of 25 nm dispersed in water with a particle concentration of 4% was used as the working fluid. The three dimensional governing equations (continuity, momentum and energy) along with the boundary conditions are solved using the finite volume method (FVM). The mass flow rate of water in the annulus was kept constant and the nanofluid flow rate in the inner tube was varied. The effect of flow configuration (parallel and counter) was also examined in this study. The performance of the HCTHE was evaluated in terms of Nusselt number, heat transfer rate, pressure drop, effectiveness and performance index. The results reveal that certain geometrical parameters such as the helix radius and inner tube diameter do affect the performance of the HCTHE under laminar flow conditions. It is also found that counter-flow configuration produced better results as compared to parallel-flow configuration. 相似文献
5.
首次实验研究了制冷剂R134a在三维微肋螺旋管内流动沸腾环状流区的流动与传热性能。对流型的可视化观察发现:当质量流速大于100kg/(m^2s)时。螺旋管内才开始出现环状流。环状流的起始干度为0.3、0.4。在流型图上给出了环状流区与其它主要流型的分区。回归了实验环状流区的传热实验数据,得到的传热关联武计算值与实验值的平均绝对误差为9.1%。 相似文献
6.
S. Pethkool S. Eiamsa-ardP. Promvonge 《International Communications in Heat and Mass Transfer》2011,38(3):340-347
The augmentation of convective heat transfer in a single-phase turbulent flow by using helically corrugated tubes has been experimentally investigated. Effects of pitch-to-diameter ratio (P/DH = 0.18, 0.22 and 0.27) and rib-height to diameter ratio (e/DH = 0.02, 0.04 and 0.06) of helically corrugated tubes on the heat transfer enhancement, isothermal friction and thermal performance factor in a concentric tube heat exchanger are examined. The experiments were conducted over a wide range of turbulent fluid flow of Reynolds number from 5500 to 60,000 by employing water as the test fluid. Experimental results show that the heat transfer and thermal performance of the corrugated tube are considerably increased compared to those of the smooth tube. The mean increase in heat transfer rate is between 123% and 232% at the test range, depending on the rib height/pitch ratios and Reynolds number while the maximum thermal performance is found to be about 2.3 for using the corrugated tube with P/DH = 0.27 and e/DH = 0.06 at low Reynolds number. Also, the pressure loss result reveals that the average friction factor of the corrugated tube is in a range between 1.46 and 1.93 times over the smooth tube. In addition, correlations of the Nusselt number, friction factor and thermal performance factor in terms of pitch ratio (P/DH), rib-height ratio (e/DH), Reynolds number (Re), and Prandtl number (Pr) for the corrugated tube are determined, based on the curve fitting of the experimental data. 相似文献
7.
为深入研究液膜内的微观传热机理,对水平管外降膜蒸发的传热特性进行了数值模拟,获得了液膜厚度、液膜流动速度和传热系数等热力参数在液膜内的分布特性。通过与实验数据的对比验证了数学模型的准确性。研究结果表明:在饱和蒸发温度62℃、传热温差2.8℃、管外径25.4mm和液膜入口速度0.071~0.15 m/s条件下,沿圆周方向,液膜厚度减小,传热系数增加,直至达到液膜热力发展区,膜厚和传热系数趋于稳定;受液膜内温度变化的影响,液膜内的粘度、表面张力和导热系数的变化对液膜传热特性产生显著影响。 相似文献
8.
The mechanism of convective condensation heat transfer of moist mixed gas across a horizontal tube was studied in this paper. The models referring to how the liquid film flows and the heat transfers on the tube are set up by combining modified film model and Nusselt condensation theory. The effects of Re number, wall temperature, and water vapor concentration on condensation heat transfer are discussed. Results predict that the film thickness profile on the tube is influenced greatly by vapor shear force on liquid film. Local Nusselt number depends remarkably on gas phase heat resistance, which is different from pure vapor and very similar to single‐phase gas. © 2007 Wiley Periodicals, Inc. Heat Trans Asian Res, 36(6): 324–333, 2007; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.20169 相似文献
9.
The modified film model combined with Nusselt's condensation theory are used for the study of convective condensation heat transfer on a horizontal tube with moist mixed horizontal gas flows at a given speed. A theoretical model considering gas boundary layer separation was set up. The liquid film flows and the heat transfer on the tube are presented. The effects of the flow direction on condensation heat transfer are discussed. The results predict that the condensate film is so thin that the liquid phase heat resistance can be ignored. © 2008 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.20238 相似文献
10.
Prediction of heat transfer and flow characteristics in helically coiled tubes using artificial neural networks 总被引:1,自引:0,他引:1
In this study, Artificial Neural Network (ANN) models were developed to predict the heat transfer and friction factor in helically coiled tubes. The experiments were carried out with hot fluid in coiled tubes which placed in a cold bath. Coiled tubes with various curvature ratios and coil pitches (nine Layouts) were used. The output data of the ANNs were Nusselt number and friction factor. The validity of the method was evaluated through a test data set, which were not employed in the training stage of the network. Moreover, the performance of the ANN model for estimating the Nusselt number and friction factor in the coiled tubes was compared with the existing empirical correlations. The results of this comparison show that the ANN models have a superior performance in predicting Nusselt number and friction factor in the coiled tubes. 相似文献
11.
利用隔膜泵作为系统动力输出源,搭建了单管内传热和流动测试实验台,对制冷剂R22在水平单管内的换热性能进行了实验研究,考察了不同蒸发温度和不同冷凝温度对总传热系数、制冷剂表面换热系数和管内压降的影响.实验结果表明:总传热系数和制冷剂表面换热系数均随着蒸发温度和冷凝温度的上升而增大;管内压降随着蒸发温度的上升而减小,随着冷凝温度的上升而增大;对于同一根实验管,在相同的冷却水流量和制冷剂质量流量下,最佳蒸发工况为10℃;冷凝实验中,总传热系数和制冷剂表面换热系数在40℃时高于其他两种冷凝温度时的值,但35℃冷凝时,管内压降高于其他两种工况. 相似文献
12.
13.
14.
Heat transfer characteristics of a temperature-dependent-property fluid in shell and coiled tube heat exchangers 总被引:1,自引:0,他引:1
An experimental investigation was performed to study the heat transfer characteristics of temperature-dependent-property engine-oil inside shell and coiled tube heat exchangers. For this purpose, a well-instrumented set-up was designed and constructed. Three heat exchangers with different coil pitches were selected as the test section for counter-flow configuration. Engine-oil was circulated inside the inner coiled tube, while coolant water flowed in the shell. All the required parameters like inlet and outlet temperatures of tube-side and shell-side fluids, flow rate of fluids, etc were measured using appropriate instruments. An empirical correlation existed in the previous literature for evaluating the shell-side Nusselt number was invoked to calculate the heat transfer coefficients of the temperature-dependent-property fluid flowing in the tube-side of the heat exchangers. Using the data of the present study, an empirical correlation was developed to predict the heat transfer coefficients of the temperature-dependent-property fluid flowing inside the shell and coiled tube heat exchangers. 相似文献
15.
16.
Experiments have been performed to investigate the effect of coiled spring inserts on heat transfer, pressure drop, and performance parameters of a triple tube heat exchanger (TTHX). Three different spring inserts having a pitch of 5, 10, and 15 mm are used and the diameter of the spring wire is taken as 1 mm. The experiments were carried out under a turbulent flow regime, with water as a working medium in parallel and counter flow configurations. The variation in different performance characteristics like heat transfer coefficient, Nusselt number, and effectiveness have been compared at various Reynolds numbers ranging between 4000 and 16,000 in the considered flow patterns. The Nusselt number of TTHX with the lowest pitch spring is found to be higher than that of the plain TTHX by 57.27% at Re = 4000 for the counter flow configuration. Both the thermal performance factor and effectiveness increased as the pitch of the spring insert was decreased. The effectiveness of TTHX with the lowest pitch spring insert is found higher than that of the plain TTHX by 43.84% in the counter flow pattern. 相似文献
17.
本研究基于VOF算法编写用户UDF(自定义函数),采用FLUENT软件建立了椭圆横管外降膜流动和换热的计算模型。根据CFD(计算流体力学)模型计算和分析了在不同长短轴比下管外降膜速度分布、压力分布、液膜内温度分布和管外换热分布的变化规律。研究结果表明:长短轴比的变化影响了管外液膜速度分布、压力分布和膜内温度分布;相比圆管,椭圆管的管外膜内液体流速更快。壁面压力沿周向逐渐减少并在X=0.9附近快速回升;随长短轴比e的增加,周向压力最小值位置逐渐向后推移。局部Nu数分布与压力分布在趋势上存在一致性。当e=1.65附近时,椭圆的换热性能最优;最后,通过对管形的研究分析,提出横管的传热分区模型。 相似文献
18.
19.
《Applied Thermal Engineering》2014,62(2):671-679
The heat transfer model of stable dropwise condensation for saturated vapor on a horizontal tube is developed based on previous theoretical models. Through a comprehensive analysis of all the contributing thermal resistances, the convection effect inside the droplet itself is taken into consideration in the model. For the stable dropwise condensation process in dynamic conservation, a method of double integration of heat flux through numerous inclined plates with different inclination angles is introduced to obtain the overall heat flux through the horizontal tube surface. The model can predict the variation of heat transfer of stable dropwise condensation with different contact angles outside a horizontal tube. The influences of contact angle, temperature difference, and other typical parameters on both a single droplet and the whole condensation process are discussed. The results indicate that a high contact angle can cause a size reduction of falling droplets from condensing surface and thus taking more heat away. The adsorbed condensate film adds an extra thermal resistance and its thickness plays a significant role on the dropwise condensation heat transfer. 相似文献
20.
We measure heat transfer coefficients of natural convection between two vertical smooth parallel plates heated uniformly in the laminar, transition, and turbulent regions. The heat transfer characteristics are experimentally investigated with changing width, δ, between the vertical parallel plates, wall heat flux, qw, overall watercourse length, L,of the vertical parallel plate and heating conditions. For natural convection between the vertical parallel plates, in the turbulent region of , the heat transfer is strongly suppressed owing to the effect of combined convection. On the contrary, the heat transfer in the laminar region is enhanced due to the tunnel effect. These tendencies become pronounced with decreasing δ and increasing L.The location of the heat transfer reduction shifts downstream with increasing qw under a fixed δ. Furthermore, under smaller δ, we cannot clearly distinguish the transition process in accordance with both the heat transfer enhancement in the laminar region and the heat transfer reduction in the turbulent region. © 2001 Scripta Technica, Heat Trans Asian Res, 31(1): 56–67, 2002 相似文献