首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Combined natural convection and radiation heat transfer characteristics in a vertical porous layer with a hexagonal honeycomb core were investigated experimentally. The temperature distributions on the honeycomb core wall and the combined heat transfer rates through the porous layer were measured. The measurements of the heat transfer were accomplished using the guarded hot plate method. The honeycomb core wall was made of paper and large-mesh foamed resins were inserted into the honeycomb enclosures. The measurements were performed by varying the radiation parameters between 0.5 and 0.65, varying the temperature ratios between 0.01 and 0.1, and varying the Darcy-Rayleigh numbers between 5 and 80, and for a fixed aspect ratio H/L = 1. The experimental results for Nusselt numbers agreed well with our available numerical results. © 1999 Scripta Technica, Heat Trans Asian Res, 28(4): 295–306, 1999  相似文献   

2.
This research focuses on studying the effects of heat and mass transfer convective flow passing through an infinite vertical plate embedded in porous media under radiation and chemical reaction with constant heat and mass flux. A magnetic field of strength is functional throughout the fluid region. The novelty of the present work is to examine the heat and mass transfer magnetohydrodynamics flow in the presence of thermal radiation. The equations governing the flow, heat and mass transfer are solved analytically using the perturbation technique. Expressions for velocity, temperature, concentration, skin-friction, Nusselt, and Sherwood numbers are obtained. The influence of physical parameters on the flow domain is described graphically and in tabular form. It is found that increase in radiation parameter reduces the velocity and temperature. Moreover, internal friction of the plate decreased with increasing values of radiation parameter.  相似文献   

3.
Natural convection heat transfer and flow structure in an anisotropic porous medium in a square cavity saturated with a Boussinesq fluid have been studied analytically and numerically. Based on an asymptotic analysis, three distinctive regimes are found depending on the magnitude of the permeability ratio K. In the vicinity of K = 1 the average Nusselt number and fluid velocity are scaled with (KRa) 1/2 when either K or the Rayleigh number Ra is varied. In the limit of K → 0 the heat transfer across the cavity approaches the conductive state, and the convecting velocity, which is primarily in the vertical direction, is scaled with KRa. At the other end of the spectrum, namely, K → ∞, the average Nusselt number and the convecting velocity are scaled with Ra and independent of K. The asymptotic results are verified with two‐dimensional numerical calculations. The ranges of K of the respective regimes are also determined based on the numerical results. © 2000 Scripta Technica, Heat Trans Asian Res, 29(5): 373–384, 2000  相似文献   

4.
Natural convection heat transfer and flow structure in an anisotropic porous medium of square cavity saturated with a Boussinesq fluid has been studied experimentally using a Hele‐Shaw cell. The permeability ratio defined by K = Ky/Kx was set to three different values: 0.4, 1, and 2.5. The convection patterns at the three permeability ratios are visualized at several different Rayleigh numbers by a pH indicator method. When K is 0.25, the visualized flow is mainly in the vertical direction. On the contrary, for K = 4 the convecting flow is in the horizontal direction. The average heat transfer coefficients are also measured, and the corresponding Nusselt numbers are plotted as a function of K. It is found that the corresponding Nusselt numbers are correlated with (KRa)1/2. The experimental results of the flow pattern and heat transfer are in good agreement with those obtained by our previous theory. © 2002 Wiley Periodicals, Inc. Heat Trans Asian Res, 31(6): 463–474, 2002; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.10046  相似文献   

5.
Natural convection heat transfer between concentric rectangular pipes was studied numerically. It has been found that rolls of even numbers form in the region on the top surface of the inner pipe. The number of rolls depends on both the Rayleigh number and the aspect ratio. An oblong circulation of flow forms in the region between the side surface of the inner pipe and the surface of the outer pipe. The aspect ratio does not have much effect on the average Nusselt number at the side surface of the inner pipe. The relation between the Nusselt and Rayleigh numbers at the top surface resembles that of the Rayleigh-Bénard convection obtained by Silveston (Chandrasekhar, S. 1961. Hydrodynamic and Hydromagnetic Stability, Oxford University Press, 68). The average Nusselt number at the bottom surface of the inner pipe decreases with increasing aspect ratio because the region where heat transfer is affected significantly by convection is limited. © 1998 Scripta Technica, Heat Trans Jpn Res, 27(4): 271–283, 1998  相似文献   

6.
Natural convection heat transfer between concentric rectangular parallelpipeds was studied numerically for low Rayleigh numbers Ra(≦ 3500) with aspect ratios of the inner parallelepiped of 2.0, 4.0, 6.0, and 8.0. It has been found that the flow patterns for the higher Rayleigh numbers in the space over the inner parallelpiped are ring or rectangular rolls. The number of rolls increases with the aspect ratio. The flow pattern in the side space is an oblong circulation, which extends into the bottom space. The local Nusselt number distribution on the top surface of the inner parallelpiped has peaks at the stagnation points. The relation between the Nusselt and Rayleigh numbers on the top surface is similar to that of the Rayleigh–Bénard convection obtained by Silveston (Chandrasekhar S.Hydrodynamic and Hydromagnetic Stability, 1961, p 68, Oxford University Press), while on the side and bottom surfaces the Nusselt number increases proportionately with the power of the Rayleigh number. © 2001 Scripta Technica, Heat Trans Asian Res, 30(2): 152–163, 2001  相似文献   

7.
8.
The numerical simulation for a freezing liquid-saturated porous media in a vertical cylindrical cavity under the third kind of thermal boundary condition is reported in this paper. It shows that the effect of natural convection in the liquid phase decreases the freezing layer thickness and the freezing front has a wave shape instead of a stable plane, with one or more pair of eddy cells. This indicates a fractal existence. © 1999 Scripta Technica, Heat Trans Asian Res, 28(3): 165–171, 1999  相似文献   

9.
Natural convection heat transfer in a horizontal enclosure filled with anisotropic porous media,being isothermally heated at bettom and cooled at top while the vertical walls being adiabatic,is numerically studied by applying the Brinkman model-a modified form of Darcy model giving consideratioin to the viscous effect.The results show that:(1)a larger permeability ratio(K^*) causes a lower flow intensity in the enclosure and a smaller Nusselt number,all Nusselt numbers approach unity in the limit of K^*→∞;a larger thermal conductivity ratio(λ^*) causes a stranger distortion of isotherms in the enclosure and a higher flow velocity near the walls,all the Nusselt numbers approach unity in the limit of λ^*-→0,the permeability and thermal conductivity ratios generally have opposing effects on the Nusselt number.(2) an increasing Darcy number decreases the flow intensity and heat tansfer rates,which is more significant at a lower permeability ratio.In particular,with K^*≤0.25,the Nusselt number for Da=10^-3 would differ from that of Darcy flow up to an amount of 30%,an analysis neglecting the non-Darican effect will inevitably be of considerable error.  相似文献   

10.
To clarify the effect of the suppression of natural heat transfer, the local heat transfer coefficients on a vertical cooled flat plate with circular grooves were measured by a multi‐type thermocouple method. Two flat plates with and without periodic circular grooves were tested in this experiment. The characteristics of heat transfer along the plate for both plates were compared. The local heat transfer coefficients on the periodic grooved plate became smaller than that of the flat plate. The flow pattern was changed when it passed over the grooves, and circulation was generated in the grooves in the downstream. As a result, the thickness of the thermal boundary layer on the grooved plate was more developed than the normal flat plate. © 2010 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.20294  相似文献   

11.
Water cooling panels have been adopted as the vessel cooling system of the High Temperature Engineering Test Reactor (HTTR) to cool the reactor core indirectly by natural convection and thermal radiation. In order to investigate the heat transfer characteristics of high temperature gas in a vertical annular space between the reactor pressure vessel and cooling panels of the HTTR, we carried out experiments and numerical analyses on natural convection heat transfer coupled with thermal radiation heat transfer in an annulus between two vertical concentric cylinders with the inner cylinder heated and the outer cylinder cooled. In the present experiments, Rayleigh number based on the height of the annulus ranged from 2.0 × 107 to 5.4 × 107 for helium gas and from 1.2 × 109 to 3.5 × 109 for nitrogen gas. The numerical results were in good agreement with the experimental ones regarding the surface temperatures of the heating and cooling walls. As a result of the experiments and the numerical analyses, the heat transfer coefficient of natural convection coupled with thermal radiation was obtained as functions of Rayleigh number, radius ratio, and the temperatures and emissivities of the heating and cooling wall surfaces. © 2005 Wiley Periodicals, Inc. Heat Trans Asian Res, 34(5): 293–308, 2005; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.20070  相似文献   

12.
Double-diffusive natural convection in a rectangular fluid-saturated porous medium has been studied analytically and numerically. The analysis reveals that there is a range of buoyancy ratios N in which one obtains two types of solutions or oscillating convection. In the case of 0.4 < N < 1.0, there exist two analytical solutions when Rc = 100 and Le = 30. In that case, two solutions, temperature-dominated and concentration-dominated solutions, are calculated when the aspect ratio is small. It is found that the oscillation is due to a temporal formation of a two-roll flow pattern in the cavity when the aspect ratio is sufficiently large. The oscillation of time-dependent Nusselt number and flow patterns are shown. © 1999 Scripta Technica, Heat Trans Asian Res, 28(4): 255–265, 1999  相似文献   

13.
A numerical study on a combined radiation and forced convection heat transfer of superheated steam, which is a radiation participating real gas, in thermally developing laminar flow through a parallel‐plate channel has been conducted to investigate characteristics of superheated steam drying. The integrodifferential energy equation was solved using an implicit finite‐difference technique with a marching solution procedure and an exponential wide‐band model for the treatment of the radiative transfer part. Comparison of results with and without gas radiation in various conditions shows that fluid radiation decreases the temperature of the main stream, but increases the total heat flux at a heat transfer surface. Furthermore, the results show that the fluid radiation decreases the inversion point temperature approximately to 150 to 240 °C with the increase of optical thickness. This numerical result agrees in an order of magnitude with the previous experimental studies, but is about 100 K lower than that of former theoretical predictions without considering fluid radiation. © 2000 Scripta Technica, Heat Trans Asian Res, 29(5): 385–399, 2000  相似文献   

14.
The effects of inclination on the steady natural convection local heat transfer characteristics in an air-filled enclosure, which is composed of rectangular and parallelogrammic portions, are studied numerically. In this investigation, two geometrical aspect ratios are introduced: one for a parallelogrammic portion of an enclosure, the other for a rectangular one. The governing equations for a two-dimensional, laminar, natural convection process in an enclosure are discretized by the control volume approach which ensures the conservative characteristics to be satisfied in the calculation domain, and then solved by a modified SIMPLE algorithm. The momentum and energy equations are coupled through the buoyancy term. Computations are carried out for Prandtl number Pr = 1 and Rayleigh number Ra = 2.7 × 108. In order to obtain a greater understanding of the flow and heat transfer behaviors, flow patterns with streamlines and isotherms at different inclination angles are shown. Also, the effects of numbers of installed guide vanes in a composed enclosure are studied to consider the enhancement of heat transfer of the inner diode. © 1999 Scripta Technica, Heat Trans Asian Res, 28(7): 573–582, 1999  相似文献   

15.
Natural convection heat transfer from two horizontal cylinders in the air was investigated experimentally and numerically. Two cylinders were spaced at 1.3, 1.8, and 2.7 cylinder diameters horizontally. The experiments were carried out by large lateral shear interferometry (LSI) for various Rayleigh numbers in the range of 103 to 104. Large LSI is common path interferometry with the advantages of simple structure, strong antivibration, and fewer required optical components. It is not necessary for LSI to perform a complex algorithm to restore wavefront with a large shear amount. Simple and infinite fringe interferograms of the cylinders heated from ambient temperature 282.15 to 723.15 K were obtained. A numerical simulation was carried out with ANSYS-Fluent 18.0. The influence of two factors, the distance between the cylinders, and the Rayleigh number, on the heat transfer of two horizontal cylinders was examined. The average Nusselt number and local Nusselt number were determined from the experimental results and numerical results, respectively, and the two results were in good agreement. The rising direction for the plume flow pattern of each horizontal cylinder was no longer simply vertically upward but was inclined toward the central symmetry axis of the two cylinders. In addition, the heat transfer from a cylinder increased with the cylinder spacing at any Rayleigh number.  相似文献   

16.
In the present study, the heat transfer coefficients occurring with a projection in the turbulent region of a vertical flat plate were measured experimentally for various projection heights in the range of 0 to 20 mm. The wall temperature and fluid flow fields were also visualized using a liquid crystal sheet and nylon 12 powder, respectively. The average and local Nusselt numbers reach 1.07 to 1.22 and 1.2 to 1.7 times those for pure turbulent natural convection, respectively. The maximum enhancement rates of heat transfer are attained at a position of 2.3 to 3.3 times the projection height from the upper projection surface toward the downstream, and these positions are in good agreement with those of the reattachment of the fluid flow and with centers of dark red regions in the liquid crystal. On the other hand, the heat transfer coefficients in the just upstream and downstream regions of the projection are small compared with those for no projection. By introducing the nondimensional parameter R, the present experimental results are rearranged quantitatively and effectively. © 2001 Scripta Technica, Heat Trans Asian Res, 30(3): 222–233, 2001  相似文献   

17.
Natural convection heat transfer in a circular enclosure, one half of which was heated and the other half of which was cooled, was investigated experimentally, focusing on the effect of the inclination angle. The experiments were carried out with water. Flow and temperature field were visualized by using the aluminum and liquid-crystal suspension method. The results show that with downward heating the heat transfer coefficient increased as the inclination angle of the boundary between the heating wall and the cooling wall approached the vertical. But with upward heating, the heat transfer coefficient showed minimal change, exhibiting a small peak value when the inclination angle was γ ˜ –45°. The heat transfer coefficient of a flat circular enclosure was estimated from the circular enclosure's heat transfer coefficient. These results can be explained by the obtained flow and temperature fields. © 1999 Scripta Technica, Heat Trans Asian Res, 28(2): 152–163, 1999  相似文献   

18.
This paper presents the mixed convection heat and mass transfer near a vertical surface in a stratified porous medium using an integral method. The conservation equations that govern the problem are reduced to a system of coupled non‐linear ordinary differential equations, which is then reduced into a single algebraic equation using exponential profiles for the temperature and concentration. The results for heat and mass transfer rates in terms of Nusselt and Sherwood number are presented for a wide range of governing parameters like the buoyancy ratio (N), Lewis number (Le), flow driving parameter (Ra/Pe), in addition to both thermal and solutal parameters (S and R). The results indicate that the stratification effects have considerable influence on both the heat and mass transfer rates. © 2010 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library ( wileyonlinelibrary.com ). DOI 10.1002/htj.20300  相似文献   

19.
In this paper, the feasibility of using metal foams to enhance the heat transfer capability of phase change materials (PCMs) in low- and high-temperature thermal energy storage systems was assessed. Heat transfer in solid/liquid phase change of porous materials (metal foams and expanded graphite) at low and high temperatures was investigated. Organic commercial paraffin wax and inorganic calcium chloride hydrate were employed as the low-temperature materials, whereas sodium nitrate was used as the high-temperature material in the experiment. Heat transfer characteristics of these PCMs embedded with open-cell metal foams were studied. Composites of paraffin and expanded graphite with a graphite mass ratio of 3%, 6%, and 9% were developed. The heat transfer performances of these composites were tested and compared with metal foams. The results indicate that metal foams have better heat transfer performance due to their continuous inter-connected structures than expanded graphite. However, porous materials can suppress the effects of natural convection in liquid zone, particularly for PCMs with low viscosities, thereby leading to different heat transfer performances at different regimes (solid, solid/liquid, and liquid regions). This implies that porous materials do not always enhance heat transfer in every regime.  相似文献   

20.
An incompressible, electrically conducting, and viscous fluid flowing steadily and freely across a uniformly porous media that is partially constrained by an infinitely long vertical porous plate is studied in the present article. Additionally, chemical reaction and radiation absorption effects are seen. Here, a magnetic field of uniform strength is applied transversely to the plate, a normal suction velocity is imposed on the fluid, and the heat flux is considered to be constant. The non-dimensional momentum and energy equations are solved using the method of perturbation. The problem has been analytically resolved, and several parameters, including the Hartmann number, porosity parameter, thermal Grashof number, mass Grashof number, and transport properties like the Sherwood number, skin friction, and plate temperature, are graphically represented. The current study reveals a spike in the radiation absorption effect causes skin friction to drop, but on the other hand, a contrary effect is observed for plate temperature. One of the notable findings of this investigation is that the Sherwood number increases as chemical reaction parameter influence increases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号