共查询到18条相似文献,搜索用时 78 毫秒
1.
中间相沥青的调制对纳米级微孔超高表面积活性炭性能的影响 总被引:3,自引:0,他引:3
以中间相沥青为原料,采用KOH活化制取了超高表面积活性炭,其比表面积高达3464m^2/g,总孔容积高达2.14m^3/g,碘吸附值为3094mg/g,苯吸附值为1610mg/g.所制活性炭富含发达的微孔,其孔径主要集中在1~4nm范围内,具有优异的吸附性能.研究了中间相沥青调制对纳米级微孔超高表面积活性炭性能的影响,结果表明,制备中间相沥青所用原料的净化处理是制备超高表面积活性炭的关键,以1~2℃/min升至400℃并保温2~3h所得中间相沥青制取的活性炭具有极高的吸附性能,中间相沥青炭物料的碳质微晶结构对超高表面积活性炭制取起着决定性作用。 相似文献
2.
采用原位聚合法,以过硫酸铵为氧化剂,在比表面积为2945cm2/g的中间相沥青基活性炭微球(AMCMB)表面引发苯胺聚合,制备中间相沥青基活性炭微球/聚苯胺复合材料(AMCMB/PANI)。利用扫描电镜、X射线衍射和傅里叶变换-红外光谱分析,考察其微观结构和表面形貌;通过恒流充放电、循环伏安及交流阻抗测试,研究其在6mol/L KOH溶液中的电化学性能。在电流密度为0.02A/g时,AMCMB/PANI电极的比容量为387.72F/g,与AMCMB电极的比容量相比,提高了57.46%,说明少量聚苯胺的加入可以显著地提高电极材料的比容量;当电流密度增大1000倍时,AMCMB/PANI电极的比容量为157.68F/g,表现出好的大电流充放电能力。 相似文献
3.
添加剂对中间相沥青炭微球形成的影响 总被引:1,自引:0,他引:1
以中温煤沥青为原料,分别添加3%(质量分数)的炭黑、硫、氯化铝和对甲苯磺酸于420℃保温2h制备MCMB,研究比较了这4种添加剂对MCMB制备的影响.实验结果表明,炭黑、氯化铝和对甲苯磺酸作添加剂均能制备小粒径的MCMB,其中炭黑作用下制备的MCMB形度好、粒径均一,但表面粘附有炭黑颗粒且收率低;氯化铝作用下制备的MCMB球形度好,表面光洁,单分散性好,粒径分布相对集中,收率较高;对甲苯磺酸作用下制备的MCMB粒径较小时粘结融并现象严重,粒径较大时有较好的球形度与单分散性;硫作添加剂制备的MCMB粒径较大,球形度差,粘结现象严重.氯化铝是其中较好的添加剂. 相似文献
4.
5.
6.
7.
鳞片石墨对中间相炭微球织构的影响(英文) 总被引:16,自引:3,他引:16
以煤焦油沥青为原料,磷片石墨为添加剂,在410℃温度下反应7h制得了中间相炭微球(MCMBs)。在扫描电子显微镜下对它们的表面和断面进行了分析,并用X射线衍射对其结构进行了研究。结果表明:MCMBS的表面被接近球形的小颗粒所覆盖而呈现出粗糙不平。MCB1(未加石墨)的织构主要是平行层型,而MCB2(加石墨)的织构却是复杂的。加入煤焦油沥青中的大片石墨存在于MCMBs的中心而被认为是它们的核,而小片石墨却不能象大片石墨那样在反应体系内充当核的作用。认为在成核过程中,大片石墨聚集到一起而形成晶种,同时一些低分子量的沥青组分被包裹在这些晶种的内部,石墨片以及它们的职聚体的形状,大小决定了MCMBs的织构。然而,小石墨片只能使MCMBs的织构变得杂乱。MCMBs的XRD谱图表明石墨的添加改变了其结构,并降低了它的石墨化能力和晶体大小。 相似文献
8.
以中间相炭微球( CMS)为核心材料,沥青为壳层材料前躯体,采用原位生成法制备了中间相炭微球/活性炭(AC)复合材料.将所制CMS/AC复合材料作为超级电容电池的负极材料,组装了模拟电容器和锂离子半电池.采用扫描电镜和X-射线衍射仪分析了材料的物理结构,并研究了CMS/AC复合材料的电化学行为进行研究.结果表明:CMS/AC复合负极材料在六氟磷锂/碳酸乙烯酯+碳酸二甲酯(LiPF6/EC+DMC)与四氟硼酸四乙基铵/乙腈( Et4 NBF4/AN)电解液中均表现出良好的电化学性能,其比电容在模拟电容器中达到25.8 F/g,在锂离子半电池中能达到306.6 mAh/g (0.2C);同时表现出良好的倍率性能和循环性能. 相似文献
9.
以中间相沥青(Mesophase pitch,MP)为前驱体、KOH作为活化剂,分别采用直接活化法、预炭化活化法制备出活性炭(Activated carbons,ACs).采用N2吸附法对所制ACs的比表面积、孔径分布进行分析.将所制ACs应用于电化学电容器电极材料,进行恒流充放电、循环伏安电化学分析.结果表明:电极的电化学性能不仅受活性炭比表面积、孔结构的影响,也与活性炭的微观形貌有关.其中预炭化活化法ACs颗粒具有片层结构,更有利于炭电极与电解液的浸润,提高微孔比表面积对比电容的贡献. 相似文献
10.
11.
12.
采用生物质材料制备比表面积大、微孔结构发达的活性炭,对于缓解资源紧缺、拓展活性炭在气相吸附和双电层电容器等方面的应用具有重大意义。以汉麻秆为原料、KOH为活化剂制备活性炭,通过正交试验探讨碱炭比、活化温度、活化时间对活性炭得率和碘吸附值的影响;采用场电镜、孔径分析仪对样品的微孔结构进行分析。结果表明,影响活性炭得率和碘吸附值的最显著因素分别为碱炭比和活化温度,在碱炭比4∶1、活化温度900℃、活化时间为0.5h的条件下,活性炭得率为72%、碘吸附值为2 047mg/g,比表面积为1 924.08m2/g,总孔容为1.01cm3/g,平均孔径为2.1nm;该活性炭的微孔结构发达(微孔率为81.19%),孔径分布较窄,同时存在超微孔和极微孔,且极微孔含量很高。 相似文献
13.
在2D碳/碳(C/C)复合材料的碳纤维与基体热解碳间引入中间相沥青做过渡层,研究了中间相沥青的引入对C/C复合材料力学性能的影响.结果表明,与没有过渡层,普通沥青做过渡层、中间相沥青做过渡层的三类C/C复合材料比较.采用沥青做过渡层可以提高复合材料的力学性能,采用中间相沥青做过渡层制备的C/C复合材料的弯曲强度比采用普通沥青做过渡层提高44%,剪切强度提高15%.中间相沥青的引入可以使碳纤维束间和束内的结合强度不同,从而使基体断裂产生的裂纹扩散时发生偏转,复合材料的强度和韧性同时得到提高. 相似文献
14.
15.
以正硅酸乙酯、乙醇和去离子水为原料,采用溶胶-凝胶法制备了SiO2溶胶;并以煤沥青为原料,采用自挥发发泡法制备了中间相沥青基泡沫炭。然后采用浸渍工艺将SiO2溶胶和中间相沥青基泡沫炭在常压下进行复合,制备了SiO2气凝胶/中间相沥青基泡沫炭复合隔热材料。利用XRD、SEM、热导仪和万能试验机等设备分别研究了SiO2气凝胶、中间相沥青基泡沫炭以及SiO2气凝胶/中间相沥青基泡沫炭复合材料的结构和性能。结果表明,所制备的复合材料具有一定的力学性能,同时其隔热性能优于单一泡沫炭的隔热性能,有望成为一种新型的隔热材料。 相似文献
16.
酚醛树脂基活性炭微球的电化学性能Ⅱ.作为EDLC电极材料的活性炭微球的制备及电化学性能 总被引:6,自引:4,他引:6
用直流恒流循环法考察在不同的活化条件下得到的酚醛树脂活性炭微球作为双电层电容器电极的电化学性能。结果表明,要得到高比电容的电容器电极材料,水蒸气活化的最佳条件为:在800℃下活化1h,水蒸气的量控制为氮气量的40%。在此条件下得到的酚醛树脂活性炭微球作为电极具有良好的循环充放电性能,比电容可达到143F/g,充放电效率高达98%。在2.0nm~7.5nm之间的孔对活性炭微球的比电容影响显著。 相似文献
17.
采用CVI涂层和400℃空气氧化技术对炭纤维进行表面处理,借助偏光显微镜(PLM)、扫描电镜(SEM)和弯曲性能测试研究了炭纤维表面处理对2D中间相沥青基炭/炭复合材料的组织结构与弯曲性能的影响.结果表明:两种表面处理的材料均具有韧性断裂特征,CVI涂层表面处理后材料的"假塑性效应"更为显著,但是其抗弯强度较低,基体炭的组织结构为具有光学活性的热解炭和中间相沥青炭的流线型、广域流线型组织,材料内部形成多层次的界面结构,在断裂破坏过程中,主要发生基体内聚破坏;400℃空气氧化表面处理的材料的基体炭的组织结构为中间相沥青炭的小域、广域流线型组织,材料在断裂破坏过程中,表现为混合破坏,即基体内聚破坏和界面粘结破坏同时发生. 相似文献
18.
以马尾藻为原料,采用KOH活化法制备高比表面积活性炭。探索制备马尾藻基活性炭的实验方案和最佳工艺条件。采用正交实验法研究了炭化温度、炭化时间、低温活化温度、低温活化时间和浸渍时间对制得活性炭比表面积和孔容的影响。采用N_2吸附、SEM表征考察了活性炭的孔隙结构和表面形貌。通过正交实验法分析发现,制备马尾藻基高比表面积活性炭的最佳工艺条件为:炭化温度600℃,炭化时间180min,低温活化温度400℃,低温活化时间45min,浸渍时间2h。在16组实验条件下,制备的活性炭比表面积最大为3 122m2/g,所有样品的孔径几乎全部分布在6nm以内。 相似文献