首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Escherichia coli isolates that cause meningitis in newborns are able to invade the circulation and subsequently cross the blood-brain barrier. One mechanism for traversing the blood-brain barrier might involve transcytosis through the endothelial cells. The ability of the meningitis isolate E. coli IHE3034, of serotype 018:K1:H7, to invade epithelial (T24) and endothelial (EA-hy926) cells was investigated by the standard gentamicin survival assay and by electron microscopy. Human bladder epithelial and endothelial cells were efficiently invaded by strain IHE3034, whereas epithelial human colon Caco-2 cells, canine kidney MDCK cells, and the opossum [correction of opposum] epithelial kidney cell line OK were not invaded. The ability to invade human epithelial cells of the bladder could also be demonstrated for several other newborn meningitis E. coli strains and one septicemic E. coli strain. Studies utilizing inhibitors which act on eukaryotic cells revealed a dependence on microfilaments as well as on microtubules in the process of E. coli IHE3034 entry into T24 and EA-hy926 cells. These results indicated that cell cytoskeletal rearrangements are involved in bacterial uptake and suggest that there are either two pathways (microtubule dependent and microfilament dependent) or one complex pathway involving both microtubules and microfilaments. The intracellular IHE3034 organisms were contained in a host-membrane-confined compartment mainly as single microorganisms. Intracellular replication of 1HE3034 was not detected, nor did the number of intracellular bacteria decrease significantly during a 48-h period. The ability of E. coli O18:K1 to invade and survive within certain eukaryotic cells may be another virulence factor of meningitis-associated E. coli.  相似文献   

2.
OBJECTIVE: The absence of endothelial cells at the luminal surface of a prosthetic vascular graft potentiates thrombosis and neointimal hyperplasia, which are common causes of graft failure in humans. This study tested the hypothesis that pretreatment with chronic in vitro shear stress enhances subsequent endothelial cell retention on vascular grafts implanted in vivo. METHODS: Cultured endothelial cells derived from Fischer 344 rat aorta were seeded onto the luminal surface of 1.5-mm internal diameter polyurethane vascular grafts. The seeded grafts were treated for 3 days with 1 dyne/cm2 shear stress and then for an additional 3 days with 1 or 25 dyne/cm2 shear stress in vitro. The grafts then were implanted as aortic interposition grafts into syngeneic rats in vivo. Grafts that were similarly seeded with endothelial cells but not treated with shear stress and grafts that were not seeded with endothelial cells served as controls. The surgical hemostasis time was monitored. Endothelial cell identity, density, and graft patency rate were evaluated 24 hours after implantation. Endothelial cell identity in vivo was confirmed with cells transduced in vitro with beta-galactosidase complementary DNA in a replication-deficient adenoviral vector. Histologic, scanning electron microscopic, and immunohistochemical analyses were performed 1 week and 3 months after implantation to establish cell identity and to measure neointimal thickness. RESULTS: The pretreatment with 25 dyne/cm2 but not with 0 or 1 dyne/cm2 shear stress resulted in the retention of fully confluent endothelial cell monolayers on the grafts 24 hours after implantation in vivo. Retention of seeded endothelial cells was confirmed by the observation that beta-galactosidase transduced cells were retained as a monolayer 24 hours after implantation in vivo. In the grafts with adherent endothelial cells that were pretreated with shear stress, immediate graft thrombosis was inhibited and surgical hemostasis time was significantly prolonged. Confluent intimal endothelial cell monolayers also were present 1 week and 3 months after implantation. However, 1 week after implantation, macrophage infiltration was observed beneath the luminal cell monolayer. Three months after the implantation in vivo, subendothelial neointimal cells that contained alpha-smooth muscle actin were present. The thickness of this neointima averaged 41 +/- 12 micrometer and 60 +/- 23 micrometer in endothelial cell-seeded grafts that were pretreated with 25 dyne/cm2 shear stress and 1 dyne/cm2 shear stress, respectively, and 158 +/- 46 micrometer in grafts that were not seeded with endothelial cells. CONCLUSION: The effect of chronic shear stress on the enhancement of endothelial cell retention in vitro can be exploited to fully endothelialize synthetic vascular grafts, which reduces immediate in vivo graft thrombosis and subsequent neointimal thickness.  相似文献   

3.
The prediabetic/diabetic condition functionally alters the microvascular bed of the eye and the breakdown in the transvascular barrier may be produced by changes in the retinal endothelial barrier. To better understand how retinal microvessel barrier is maintained and is altered in vivo this study applies and extends our previously described in vitro permeability technique to study retinal endothelial monolayers. The model of the retinal microvasculature consists of retinal capillary endothelial cells cultured on porous microcarrier beads and perfused in chromatographic 'cell-columns'. This model design relies on indicator-dilution techniques to measure the permeability of the retinal endothelial monolayer and detects small changes in retinal endothelial permeability produced by treatments. Bovine retinal capillary endothelial cells (RCE) were obtained using an endothelial selective media. RCE were seeded at 3 x 10(4) cells cm-2 of fibronectin-coated gelatin microcarriers. After 7 days of microcarrier culture, microcarriers were poured to form columns 0.66 cm in diameter and 1.6 cm in length. The cell-column elution patterns of coinjected optically absorbing tracers (blue dextran 2 x 10(6) Da; cyanocobalamin 1355 Da; sodium fluorescein 376 Da) were analysed to estimate the permeability of the RCE monolayers covering the microcarriers. Scanning electron microscopic examination showed complete monolayer formation on the surface of the microcarriers. We found that baseline monolayer permeability averaged 7.57 +/- 0.57 x 10(-5) cm sec-1 for cyanocobalamin and 9.29 +/- 0.78 x 10(-5) cm sec-1 for sodium fluorescein (mean +/- S.E.M., n = 39). Permeability did not increase over 2 hr of cell-column perfusion. Permeability was decreased by 1 micron isoproterenol (n = 3) and increased by 1 microgram ml-1 cytochalasin D (n = 5). This is one of the first reports of in vitro permeability values for the transport barrier formed by retinal microvascular endothelial cells. Furthermore, the endothelial component of the retinal barrier is dynamic, and is enhanced by isoproterenol and diminished by cytochalasin D.  相似文献   

4.
Inflammatory pseudotumor (inflammatory fibroid polyp) of the ileum is a rare, usually solitary and polypoid lesion that frequently presents clinically as small-intestinal intussusception and obstruction. Regional lymph nodes are usually not involved. We describe an inflammatory pseudotumor of the ileum that was multifocal, not polypoid, and involved one regional lymph node. Grossly, two circumferential transmural nodules were separated by 8.5 cm of normal ileum. Microscopically, the lesion extended through the muscularis propria into peri-intestinal adipose tissue and involved one noncontiguous regional lymph node. The pseudotumor was composed of highly vascularized stroma with a mixture of spindle cells and chronic inflammatory cells including numerous eosinophils, lymphocytes, plasma cells, histiocytes, neutrophils, and multinucleated giant cells forming small granulomas. Immunohistochemically, the majority of spindle cells reacted with vimentin but not smooth-muscle, endothelial, or lymphoid markers. Ultrastructurally, the spindle cells had abundant rough endoplasmic reticulum, cytoplasmic filaments, and dense bodies consistent with myofibroblasts, plump endothelial cells (some with Weibel-Palade bodies), and chronic inflammatory cells. We prefer the term inflammatory pseudotumor to inflammatory fibroid polyp for the lesion in this case, since it was not polypoid and shared many histologic features with inflammatory pseudotumors arising at sites other than the gastrointestinal tract.  相似文献   

5.
The cerebral endothelium represents an active interface between blood and central nervous system. The blood-brain barrier restricts the free passage of nutrients, hormones, drugs and cellular elements to the brain. Recent studies performed on freshly isolated cerebral microvessels and cultured endothelial cells of brain capillaries provided a better understanding of the properties and functions of cerebral endothelial cells. This review summarizes the main findings of the in vitro approach in the blood-brain barrier research, describes the common endothelial and unique cerebral features of the brain endothelium, and provides a short overview on how these blood-brain barrier characteristics can be induced in cerebral endothelial cells by the neighbouring cells.  相似文献   

6.
PURPOSE: Phorbol esters have been shown to have a profound influence on cellular activity in many cell types. The purpose of this study was to examine the influence of phorbol esters on the function and structure of corneal endothelial cells. METHODS: Corneas were placed under a specular microscope, and the endothelium was superfused with glutathione bicarbonate Ringer's solution (GBR); with GBR and 10 nM, 100 nM, or 1 microM 4 beta-phorbol 12-myristate 13-acetate (PMA); or with 100 nM 4-alpha-PMA. Corneal swelling curves were generated, and endothelial permeability was determined. Corneal endothelial structure was examined with a scanning electron microscope. RESULTS: Significant increases in swelling and endothelial permeability were found in corneas perfused with 100 nM PMA versus that observed in controls (swelling rate = 26 microns/hr versus 6.9 microns/hr; permeability = 6 x 10(-4) cm/min versus 3.4 x 10(-4) cm/min) and in corneas receiving 1 microM PMA versus that in controls (swelling rate = 26.3 microns/hr versus 0.12 micron/hr; permeability = 6.9 x 10(-4) cm/min versus 4.9 x 10(-4) cm/min). Application of 10 nM PMA did not significantly alter either parameter. Study with transmission electron microscope demonstrated significant morphologic changes in cells perfused with all concentrations of PMA. Corneas perfused with 100 nM 4-alpha-PMA versus 100 nM PMA had significantly lower slope and permeability values (swelling rate = 5.9 microns/hr versus 25.1 microns/hr; permeability = 3 x 10(-4) cm/min versus 6.7 x 10(-4) cm/min). CONCLUSIONS: Phorbol esters are detrimental for corneal endothelial function, creating significant corneal swelling, increases in endothelial permeability, and changes in endothelial cell structure. This effect appears to be mediated through a protein kinase C pathway.  相似文献   

7.
8.
In this study we attempted to demonstrate whether endothelial cell nitric oxide synthase (eNOS) and xanthine oxidase (XO) could be activated to release nitric oxide (NO) and peroxynitrite (ONOO-) following exposure to ultraviolet B (UVB) radiation and to define whether this light-induced response could be involved in the pathogenesis of sunburn erythema and inflammation. Treatment of human endothelial cells with UVB (290-320 nm) radiation (up to 100 mJ/cm2) resulted in an increase of both NO and ONOO- release that was inhibited by NG-monomethyl-L-arginine (L-NMMA). Treatment of cell cytosol with various doses of UVB radiation (up to 20 mJ/cm2) resulted in a threefold increase of XO activity that was inhibited (approximately 90% by oxypurinol. In reconstitution experiments, when purified eNOS was added to purified XO, an almost fourfold increase in ONOO- production at 20 mj/cm2 UVB radiation was observed. UVB radiation (100 mg/cm2) decreased cell membrane fluidity, indicating changes in the physicochemical characteristics of the membranes. In in vivo experiments, when human volunteers were subjected to UVB light, a protection factor (PF) of 3.90 +/- 0.85 was calculated when an emulsified cream formulation containing nitro-L-arginine (L-NA; 2%) and L-NMMA (2%) was applied to their skin. The present studies indicate that UVB radiation acts as a potent stimulator of eNOS and XO in human endothelial cells. The cytotoxic effects of NO and ONOO- may be the main factors in the integrated response of the skin leading to vasodilatation, the first key event of erythema production and the inflammation process.  相似文献   

9.
Studies of brain microvessel endothelial cell physiology and blood-brain barrier properties are often hampered by the requirement of repeatedly producing and characterizing primary endothelial cell cultures. The use of viral oncogenes to produce several immortalized brain microvessel cell lines has been reported. The resulting cell lines express many properties of the blood-brain barrier phenotype but do not completely mimic primary endothelial cells in culture. As immortalized brain microvessel endothelial cell lines have not yet been produced from mice, we transformed mouse brain endothelial cells with the adenovirus E1A gene using a retroviral vector (DOL). Eight of 11 clones produced exhibited an endothelial-like cobblestone morphology and were characterized as endothelial with a panel of antibodies, lectins, and ultrastructural criteria. These cells are endothelial in origin and share ultrastructural features with primary cultures of endothelial cells. Examination of freeze fracture and transmission electron micrographs show adherens junctions exist between the transformed cells, and culture in astrocyte-conditioned medium induces the formation of gap junctions. This is one indication that responses to astrocyte-derived factors are retained by the transformed cell lines.  相似文献   

10.
The establishment of cell lines allows reproductible in vitro studies that would be far more difficult to perform using primary cells that rapidly undergo phenotypical alterations in culture. The purpose of this work was to establish an endothelial cell line appropriate for in vitro study of endothelial cell activation during xenograft rejection. Porcine aortic endothelial cells were transfected with the early region of SV40 and selected on the basis of morphological, phenotypical, and functional features. By light and electron microscopy, the porcine aortic endothelial cell line (PAEC11) and primary cells were similar except that PAEC11 was slightly smaller. PAEC11 displayed endothelial cell characteristics since it endocytosed acetylated low density lipoproteins, produced von Willebrand factor, and expressed E-selectin. Human natural antibodies bound to the same xenoantigens on PAEC11 and primary cells. That binding was followed by human complement activation and cell lysis. In addition, PAEC11 was found appropriate for genetic engineering since it could be transfected with a plasmid encoding a foreign gene. Therefore, this cell line should be a useful model for in vitro study of endothelial cell function in general and human-to-swine xenograft rejection in particular.  相似文献   

11.
BACKGROUND AND AIMS OF THE STUDY: The main disadvantage of xenograft bioprosthetic heart valves is limited durability due to tissue degeneration. METHODS: To study possible alternatives to conventional bioprosthetic heart valves, glutaraldehyde preserved porcine aortic valve leaflets were precoated with fibronectin-heparin and acidic fibroblast growth factor (aFGF) to enhance cell proliferation. Furthermore, different methods of storage and preservation (1.0% benzoic acid, 1.0% sorbic acid, 0.05% and 0.5% dialdehyde starch) were compared to conventional preservation procedures. Valve leaflets were lined with adult human saphenous vein endothelial cells (1.0 x 10(4) AHSVEC/cm2). The different methods of preservation were compared to leaflets precoated additionally with 1.0 microgram/cm2 aFGF protein, derived from gene manipulated bacteria. Endothelial growth kinetics were studied and verified by an increase of activation following 3H-thymidine incorporation, while the maintained metabolic cell activity was demonstrated by prostacyclin (PGI2) release measurements. In subsequent experiments in vivo degeneration and mineralization were determined by subcutaneous implantation in rats for up to 40 days. RESULTS: Our results favored alternatively treated valve leaflets; endothelial cells grew to persistent monolayers in six to 12 days in contrast to conventional processed leaflets where no endothelial cell growth was possible. Atomic absorption spectroscopic assessment of subdermal valve implants showed significantly lower contents of calcium, magnesium and phosphate in alternatively treated leaflets. Furthermore, precoating of alternatively preserved valve leaflets with aFGF protein and endothelial cells improved in vitro and in vivo results significantly. CONCLUSIONS: Our study shows that endothelial cell growth as well as significantly reduced in vivo degeneration and mineralization of valve leaflets may be feasible if bioprosthetic heart valves are processed according to alternative, non-toxic conservation procedures and are precoated with angiogenic growth factor protein.  相似文献   

12.
Cultured canine jugular vein endothelial cells were seeded on polycarbonate filters to create an in vitro permeability assay. The calculated diffusive permeability coefficient for FITC-BSA across untreated monolayers was 1.1 +/- 0.4 x 10(-6) cm/s. After 15-min incubations with either histamine or bradykinin, the resistance to albumin flux across the monolayers was reduced significantly. Diffusive albumin permeability coefficients were 3.4 +/- 1.8 x 10(-6) and 4.1 +/- 2.0 x 10(-6) cm/s, respectively. Ultrastructural morphometric analyses of the endothelial cell monolayers served to define uniform dimensions of intercellular clefts and similar plasmalemmal vesicle densities in the untreated and the vasomediator-activated monolayers. These results are consistent with the interpretation that the vasomediator-activated pathway across the venous endothelial monolayers is not dependent on sustained intercellular gap formation or sustained expansion of the plasmalemmal vesicle population for the 15-min observation periods. Whether the increased albumin flux is dependent on transient gap formation or on physical changes within the venous endothelial cell glycocalyx remains to be tested.  相似文献   

13.
Sympathetic neuronal activity is primarily responsible for the neurogenic control of cerebral autoregulation. The stimulation of sympathetic nerves causes both large arterial constriction and small vessel dilation in experimental animals. However, the role of the sympathetic nervous system in the control of cerebral hemodynamics has yet to be clarified in humans. In order to assess the effect of sympathetic activation on human cerebral hemodynamics, we performed a simultaneous transcranial Doppler (TCD) monitoring of bilateral middle cerebral arterial flow velocity in 16 healthy male volunteers (mean age 26) during well-known sympathetic activation measures such as isometric hand-grip exercise (IHE) and cold pressor test (CPT). Blood pressure was checked manually before and at each minute during tests. The mean arterial pressure (MAP) was calculated as (systolic pressure + 2 X diastolic pressure)/3. There was a significant increase in MCA flow velocities during both sympathetic activation tests. The percent increase of diastolic velocity (36% with IHE and 24% with CPT) was significantly higher than systolic velocity (21% with IHE and 9% with CPT). The pulsatility index was significantly decreased during the tests (from 0.75 to 0.58 with IHE and from 0.81 to 0.63 with CPT). These results suggest that sympathetic activation increases MCA flow velocities, related with a reduction in small vessel resistance and/or a constriction of large arteries.  相似文献   

14.
We have isolated a novel, high Mr protein from human retinal pigment epithelial cells and endothelial cells by affinity chromatography on Sepharose 4B. Two polypeptides are present on SDS-gels of the 8 M urea eluent with apparent molecular mass of approximately 210 and 47 kDa. In the absence of dithiothreitol, the two polypeptides migrate as one protein band with an apparent molecular mass of approximately 550 kDa. "Piglet," as this molecule is tentatively named, is present in retinal pigment epithelial and endothelial cells of several species, but could not be detected in the nonepithelial cells we examined. Immunofluorescent localization using an antibody to the 210-kDa polypeptide revealed a filamentous network in the cytoplasm of cultured cells. This antibody was used to identify a cDNA for piglet in a bovine aortic endothelial cell expression library. Sequence data indicate a high degree of identity with non-muscle myosin II heavy chain. We subsequently found that piglet had an actin-activated ATPase activity, colocalized with actin in cells, and reacted on Western blots with a pan-non-muscle myosin II heavy chain antiserum. The protein was also recognized by antibodies specific for myosin heavy chain isoform A, but did not react with anti-isoform B antibodies. Although piglet has several features in common with known forms of non-muscle myosin II, the distinctly unconventional features it displays suggest that it is a novel myosin.  相似文献   

15.
Tumor progression necessitates the induction of blood vessels that converge upon the tumor and enhance the diffusibility of oxygen and nutrients. Approaches to treat cancer by antiangiogenic therapy are therefore straightforward, and there is a great need for suitable in vitro systems to test antiangiogenic agents. In the present study, embryoid bodies (EBs) differentiated from totipotent mouse embryonic stem (ES) cells and cultivated using the spinner flask technique are introduced as an in vitro system for antiangiogenesis research. ES cells effectively differentiated endothelial cells within the three-dimensional tissue of EBs. The total area of capillary-like structures, which were positive for CD31 (platelet endothelial cell adhesion molecule, PECAM-1), was assessed by confocal laser scanning microscopy and image analysis of a series of optical sections. Endothelial differentiation occurred between Day 4-5 and Day 8 of EB development. Within 7 days, 100% of EBs contained capillary-like structures. Suramin, tamoxifen, tetrahydrocortisol, and a combination of tetrahydrocortisol and heparin were tested for their antiangiogenic capacity in the EB system and were found to efficiently inhibit endothelial differentiation. Diffusion studies of a 10-kd 2',7'-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein (BCECF)-dextran and the fluorescent, amphiphilic agent doxorubicin in avascular and vascularized EBs revealed that the endothelial structures formed functional vessels that facilitated diffusion. The diffusion coefficient D for doxorubicin was 296 x 10(-9) cm2 s(-1) in vascularized 8-day-old EBs, ie, about 10-fold larger than in avascular 3-day-old EBs (18 x 10(-9) cm2 s(-1)) and EBs treated with suramin (14 x 10(-9) cm2 s(-1)), tamoxifen (13.5 x 10(-9) cm2 s(-1)), and tetrahydrocortisol/heparin (18.5 x 10(-9) cm2 s(-1)). Consequently, avascular EBs treated with antiangiogenic agents developed central necrosis, which was absent in vascularized EBs. Our findings indicate that EBs are a suitable in vitro model system to study the effects of antiangiogenic agents in a three-dimensional tissue context. Furthermore, EBs provide a unique model to investigate the diffusion of anticancer agents in a tissue in both the avascular and vascularized states.  相似文献   

16.
To characterize L-selectin-dependent cell adhesion to human vascular endothelium, human cardiac microvascular endothelial cells (HCMEC) and human coronary endothelial cells (HCEC) were isolated from explanted human hearts. The adhesion behavior of human (NALM-6) and mouse (300.19) pre-B cells transfected with cDNA encoding for human L-selectin was compared with that of the respective nontransfected cells in a flow chamber in vitro. More than 80% of the adhesion to tumor necrosis factor-alpha (TNF-alpha)-stimulated HCMEC at shear stresses >2 dyne/cm2 was L-selectin dependent and could be equally well blocked by an anti-L-selectin antibody or a L-selectin-IgG-chimera. No L-selectin dependent adhesion to HCEC could be shown. The L-selectin dependent adhesion to HCMEC was insensitive to neuraminidase, but greatly inhibited by addition of NaClO3, which inhibits posttranslational sulfation and remained elevated for at least 24 hours of stimulation. E-selectin dependent adhesion of HL60 cells to HCMEC was blocked by neuraminidase, but not by NaClO3 and returned to control levels within 18 hours of HCMEC stimulation. It is concluded that microvascular, but not macrovascular endothelial cells express TNF-alpha-inducible sulfated ligand(s) for L-selectin, which differ from known L-selectin ligands, because sialylation is not required. The prolonged time course of L-selectin dependent adhesion suggests a role in sustained leukocyte recruitment into inflammatory sites in vivo.  相似文献   

17.
Sulfur Mustard (SM) is a vesicant or blistering chemical warfare agent, for which there still is no effective therapy. Endothelial cells are one of the major cellular targets for SM. The mechanism of endothelial cell death during SM injury is poorly understood. We studied the effect of exposure of endothelial cells to 0-1000 microM SM over the time course of 2-24 hr to determine the role of apoptotic and necrotic patterns of cell death in endothelial injury induced by SM. SM concentrations < or = 250 microM induced exclusively apoptosis which was observed after 5 hr in 30% of endothelial cells. Exposure to SM concentrations > or = 500 microM caused apoptosis and necrosis to the same extent in 60-85% of all cells after 5 to 6 hr. Necrosis was accompanied by a significant (approximately 50%) depletion of intracellular ATP, while in apoptotic cells ATP remained at the level similar to healthy cells. Interestingly, disruption of the long actin filament stress fibers and rounding of cells preceded other features of apoptosis--DNA fragmentation, membrane budding, and apoptotic body formation. In apoptotic cells, microfilaments formed constricted perinuclear bands, which were not observed in necrotic cells. Pretreatment with 50 mM N-acetyl-L-cysteine (NAC), a sulfhydryl donor and antioxidant, nearly eliminated the apoptotic features of cell death but did not prevent necrosis in response to SM. NAC pretreatment alone induced reorganization of actin filaments into an enhanced network of long stress fibers instead of a dominant cortical band of actin. NAC pretreatment prevented loss of cell adherence and cell rounding following exposure to 250 microM SM. The effect of NAC on cytoskeletal organization and its ability to eliminate SM-induced apoptosis suggests that actin filament organization may be an important element in cellular susceptibility to apoptotic stimuli.  相似文献   

18.
Clear cell tumor ("sugar tumor") of the lung is a rare benign lesion with unclear histogenesis. It is composed of large cells with a clear cytoplasm rich in glycogen, blended with an abundant network of sinusoid-type vessels. We report two cases of sugar tumor, one of these lacking clearly demonstrable glycogen storage. In both, the tumor cells lacked keratin expression and were positive for vimentin and HMB 45, an antibody recognizing perivascular or myoid cell proliferation such as lymphangioleiomyomatosis and angiomyolipoma. The tumor cells were also immunoreactive for an endothelial cell marker, CD 34, but negative for Factor VIII or smooth muscle actin. Intercellular deposition of basal-like material was immunostained with Type IV collagen. At ultrastructural examination of one of these cases, tumor cells showing features of pericytes or poorly differentiated perivascular leiomyocytes encased in basement material were observed in close association with endothelial cells; their cytoplasm contained numerous membrane-bound glycogen and pinocytic vesicles. We conclude that on the basis of immunohistochemical and ultrastructural phenotype, sugar tumor presents pericytic features and that glycogen storage is not a constant feature of these benign tumors.  相似文献   

19.
The fine structure of the intima of the pig aortic arch is described for areas of spontaneously differing in vivo endothelial permeability, as demarcated by uptake of the protein-binding azo dye Evans blue. Areas of enhanced permeability (blue areas) consistently show a variety of features not observed in areas devoid of dye accumulation (white areas). The subendothelial space of blue areas is markedly thickened and edematous, containing collagen, elastic tissue elements, and undifferentiated cells dispersed in an amorphous floccular matrix of low electron density. Endothelial cells in blue areas are generally cuboidal, with relatively short, frequently vacuolated junctions. In contrast, endothelial cells from white areas are flat and elongate, with long intercellular junctions exhibiting many interdigitations. Cytoplasmic differences include a well-developed rough endoplasmic reticulum and more frequent lysosomal bodies in blue areas and a prominent Golgi apparatus in the endothelium of white areas. Additionally, endothelial cell injury or death with and without denudation occurs with a significantly greater frequency in blue relative to white areas. An endothelial glycocalyx is some threefold thicker over the surface of white relative to blue areas. It is concluded that neither endothelial structure nor function are homogeneous within the aortic arch of the young pig and that areas of spontaneously differing permeability to proteins are associated with a spectrum of alterations in endothelial and intimal morphology.  相似文献   

20.
Cell culture models have been extensively used for studies of blood-brain barrier (BBB) function. However, several in vitro models fail to reproduce some, if not most, of the physiological and morphological properties of in situ brain microvascular endothelial cells. We have recently developed a dynamic, tridimensional BBB model where endothelial cells exposed to intraluminal flow form a barrier to ions and proteins following prolonged co-culturing with glia. We have further characterized this cell culture model to determine whether these barrier properties were due to expression of a BBB phenotype. Endothelial cells of human, bovine or rodent origin were used. When co-cultured with glia, intraluminally grown endothelial cells developed features similar to in vivo endothelial cells, including tight junctional contacts at interdigitating processes and a high transendothelial resistance. This in vitro BBB was characterized by the expression of an abluminal, ouabain-sensitive Na/K pump, and thus favored passage of potassium ions towards the lumen while preventing K+ extravasation. Similarly, the in vitro BBB prevented the passage of blood-brain barrier-impermeant drugs (such as morphine, sucrose and mannitol) while allowing extraluminal accumulation of lipophylic substances such as theophylline. Finally, expression of stereo-selective transporters for Aspartate was revealed by tracer studies. We conclude that the in vitro dynamic BBB model may become an useful tool for the studies of BBB-function and for the testing of drug passage across the brain endothelial monolayer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号