首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A soft hydrogel formulation for the transdermal delivery of testosterone (TS) was developed, and the effect of various skin-permeation enhancers was studied in vitro and in vivo. Testosterone was incorporated into a polyvinyl alcohol (PVA)-based soft hydrogel with polyisobutylene (PIB) and various skin-permeation enhancers (dodecylamine, HPE101, oleic acid, or lauric acid). In vitro rat-skin permeation of TS from the soft hydrogel was investigated using Keshary-Chien diffusion cells for 24 hr at 37°C. In vivo plasma-concentration profiles of TS after applying the soft hydrogel on the dorsal skin of rat were determined using a commercial radioimmunoassay kit. The formulated soft hydrogel formed a thin film on the skin within 2 to 3 min after application and remained in a dried-film state for at least 24 hr. Addition of PIB into the hydrogel to increase the adhesion resulted in a negligible reduction in the skin-permeation rate of TS. However, rat-skin permeation of TS increased with the addition of permeation enhancers both in vitro and in vivo. Dodecylamine at the concentration of 3% was the most effective among tested. Plasma concentration of TS significantly increased for at least 24 hr with the addition of dodecylamine. These results suggest the feasibility of the development of a soft hydrogel formulation for the transdermal delivery of TS.  相似文献   

2.
Transdermal delivery is one of the most convenient drug administration routes. In this study, the cellulose acetate membranes were cast with acetone as a solvent at 22 and 40 °C. Polyethylene glycol (PEG, MW 600) was used as a pore-forming agent. The in vitro release rates of scopolamine base as a model drug through the membranes were evaluated in phosphate buffer solution (PBS, pH 7.4) at 32 °C. The membranes were characterized by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), thermal mechanical analysis (TMA) and thermogravimetric analysis (TGA). It was observed that the drug permeation through the cellulose acetate membranes was obviously affected by the incorporated PEG content and formed membrane morphology. There was no drug flux from the cellulose acetate membranes prepared without PEG. An increased PEG content resulted in a faster scopolamine release due to a more porous structure created. Both the membrane fabrication temperature and the PEG content can affect the thermal, mechanical and morphological properties of the resultant membranes. With the optimized fabrication conditions, linear in vitro release profiles of scopolamine over 3 days were achieved. The membranes developed would be useful for transdermal delivery of drugs.  相似文献   

3.
The transdermal in vitro permeation behavior of the highly potent dopamine agonist Proterguride was investigated using hairless mouse skin as a model membrane. Drug in adhesive matrix formulations based on different types of pressure-sensitive adhesives (Eudragit® E 100 and Gelva®7883 as acrylates, Oppanol® B 15 SFN as polyisobutylene, and BioPSA® 7-4202 as silicone) with a drug load of 3% by weight were manufactured. All patches were examined for drug crystallization by polarized microscopy immediately after the manufacturing process and after storage for 30 days in sealed aluminium laminate bags at ambient temperature and at 40°C, respectively. Furthermore, the influence of the drug load in acrylate-based formulations onto the steady-state flux of Proterguride was examined. The Eudragit® E 100 system delivered a significantly higher steady-state flux than the systems based on Oppanol® B 15 SFN and also a somewhat higher steady-state flux than the Gelva®-based patch. An addition of 10% by weight of the crystallization inhibitor povidone 25 did not significantly influence the steady-state flux of Proterguride from acrylate matrices. The lipophilic silicone and polyisobutylene adhesives facilitated drug crystallization within the short storage periods at both conditions, probably due to the absence of povidone 25, which was incompatible with these polymers. Varying the drug load in acrylate-based formulations led to a linear increase of the steady-state flux until the steady-state flux of Proterguride leveled off and the patches tended to drug crystallization. It was found that Gelva®-based patches show good physical stability, good skin adhesion, and moderate flux values and, thus, can be evaluated as a basis for a suitable formulation for the transdermal administration of Proterguride.  相似文献   

4.
A novel microemulsion was prepared to increase the solubility and the in vitro transdermal delivery of poorly water-soluble vinpocetine. The correlation between the transdermal permeation rate and structural characteristics of vinpocetine microemulsion was investigated by pulsed field gradient nuclear magnetic resonance (PFG-NMR). For the microemulsions, oleic acid was chosen as oil phase, PEG-8 glyceryl caprylate/caprate (Labrasol®) as surfactant (S), purified diethylene glycol monoethyl ether (Transcutol P®) as cosurfactant (CoS), and the double-distilled water as water phase. Pseudo-ternary phase diagrams were constructed to obtain the concentration range of each component for the microemulsion formation. The effects of various oils and different weight ratios of surfactant to cosurfactant (S/CoS) on the solubility and permeation rate of vinpocetine were investigated. Self-diffusion coefficients were determined by PFG-NMR in order to investigate the influence of microemulsion composition with the equal drug concentration on their transdermal delivery. Finally, the microemulsion containing 1% vinpocetine was optimized with 4% oleic acid, 20.5% Labrasol, 20.5% Transcutol P, and 55% double-distilled water (w/w), in which drug solubility was about 3160-fold higher compared to that in water and the apparent permeation rate across the excised rat skin was 36.4 ± 2.1 µg/cm2/h. The physicochemical properties of the optimized microemulsion were examined for the pH, viscosity, refractive index, conductivity, and particle size distribution. The microemulsion was stable after storing more than 12 months at 25°C. The irritation study showed that the optimized microemulsion was a nonirritant transdermal delivery system.  相似文献   

5.
Abstract

Pain is a global crisis and significant efforts have gone into the development of drugs that can be used to treat pain. Nonsteroidal anti-inflammatory drugs (NSAIDs) are a class of analgesics that act to selectively relieve pain and inflammation without significantly altering consciousness. Although there have been many advancements with NSAIDs drug development; these drugs still present with severe adverse effects and toxicities, which often limits their use in many patients. Moreover, others are inadequate in relieving specific types of pain such as localized or nerve pain because of poor systemic absorption with conventional delivery systems. The topical route of drug delivery has been used to avoid many of these effects, but not without challenges of its own. The skin acts as an impermeable barrier to most polar drug candidate and absorption across the dermal membranes is often too slow and incomplete to produce meaningful therapeutic benefit. Nevertheless, the use of microemulsions as topical delivery systems for small molecule drug candidates like NSAIDs has been posited as a solution to this problem for years. This review focuses on the recent use of microemulsions as a probable solution to the challenges of transdermal drug delivery of NSAIDs and how microemulsions may be used to enhance the development of more effective but safer analgesic drug products for patients.  相似文献   

6.
Ambroxol is an expectoration improver and mucolytic agent that has been used to treat acute and chronic disorders. However, ambroxol needs to be administered percutaneously in order to avoid systemic adverse effects, such as headache, drowsiness, dizziness, and insomnia, which can occur after oral administration. The aim of this study was to develop a gel preparation containing a permeation enhancer to enhance the delivery of ambroxol. The ambroxol gels were prepared using hydroxypropyl methylcellulose (HPMC) and poloxamer 407. The release characteristics of the drug from the gels were examined according to the receptor medium, drug concentration, and temperature. The rate of drug permeation into the skin was enhanced by incorporating various enhancers such as the ethylene glycols, the propylene glycols, the glycerides, the non-ionic surfactants, and the fatty acids into the gels. The permeation study through mouse skin was examined at 37˚C. The rate of drug release increased with increasing drug concentration and temperature. Among the enhancers used, propylene glycol mono caprylate showed the best enhancing effects. The estimated activation energy of release (Ea), which was calculated from the slope of a log P versus 1000/T plot, was 14.80, 14.22, 13.91, and 12.46 kcal/mol for ambroxol loading doses of 2, 3, 4, and 5%, respectively. The results of this study show that the gel preparation of ambroxol containing a permeation enhancer could be developed for the enhanced transdermal delivery of ambroxol.  相似文献   

7.
The purpose of this study was to investigate the influence of structure and composition of microemulsions (AOT/Tween85/isopropyl myristate/water) on their transdermal delivery potential of a lipophilic model drug (Cyclosporin A), and to compare the drug delivery potential of microemulsion to the suspension of drug in normal saline containing 20% ethanol. Their type and structure were examined by measuring surface tension, density, viscometry, and electric conductivity; the degree of agreement between the techniques was assessed. Transdermal flux of Cyclosporin A through rat skin was determined in vitro using Franz-type diffusion cells. Results of conducting, viscosity, and surface tension measurement confirmed the prediction transition to a bicontinuous structure. The microemulsions increased transdermal drug delivery of Cyclosporin A up to 10 times compared to the suspension. The increased transdermal delivery was found to be due mainly to water concentration and appeared to be dependent on the structure of the microemulsions.  相似文献   

8.
Purpose: Damar Batu (DB) is a novel film-forming biomaterial obtained from Shorea species, evaluated in this study for its potential application in transdermal drug delivery system. Methods: DB was characterized initially in terms of acid value, softening point, molecular weight (Mw), polydispersity index (Mw/Mn), and glass transition temperature (Tg). Neat, plasticized films of DB were investigated for mechanical properties. The biomaterial was further investigated as a matrix-forming agent for transdermal drug delivery system. Developed matrix-type transdermal patches were evaluated for thickness and weight uniformity, folding endurance, drug content, in vitro drug release study, and skin permeation study. Results: On the basis of in vitro drug release and in vitro skin permeation performance, formulation containing DB/Eudragit RL100 (60 : 40) was found to be better than other formulations and was selected as the optimized formulation. IR analysis of physical mixture of drug and polymer and thin layer chromatography study exhibited compatibility between drug and polymer. Conclusion: From the outcome of this study, it can be concluded that applying suitable adhesive layer and backing membrane-developed DB/ERL100, transdermal patches can be of potential therapeutic use.  相似文献   

9.
The aim of this study was to evaluate the capacity of cellulose films enriched with oleic acid and polysorbate 80 to enhance the transdermal permeation of propranolol hydrochloride. Polymeric films were prepared by casting and drying aqueous solutions of hydroxypropylmethylcellulose or carboxymethylcellulose and characterized in chemical–physical properties, such as drug content, thickness, morphology and water uptake capacity. In vitro transport experiments were performed in order to evaluate the permeation enhancing ability of oleic acid and polysorbate 80. All carboxymethylcellulose films showed lower cumulative amounts of drug permeated than hydroxypropylmethylcellulose. Moreover, films containing both oleic acid and polysorbate 80 provided a greater permeation in comparison to film without permeation enhancers or only with one of these. The results obtained confirm that propranolol hydrochloride permeation can be easily modulated by varying the cellulose and enhancer type used for film preparation.  相似文献   

10.
Objective: Difference of pH that exists between the skin surface and blood circulation can be exploited for transdermal delivery of drug molecules by loading drug into pH-sensitive polymer. Eudragit S100 (ES100), a pH-sensitive polymer having dissolution profile above pH 7.4, is used in oral, ocular, vaginal and topical delivery of drug molecules. However, pH-sensitive potential of this polymer has not been explored for transdermal delivery. The aim of this research work was to exploit the pH-sensitive potential of ES100 as a nanocarrier for transdermal delivery of model drug, that is, Piroxicam.

Methods: Simple nanoprecipitation technique was employed to prepare the nanoparticles and response surface quadratic model was applied to get an optimized formulation. The prepared nanoparticles were characterized and loaded into Carbopol 934 based hydrogel. In vitro release, ex vivo permeation and accelerated stability studies were carried out on the prepared formulation.

Results: Particles with an average size of 25–40?nm were obtained with an encapsulation efficiency of 88%. Release studies revealed that nanoparticles remained stable at acidic pH while sustained release with no initial burst effect was observed at pH 7.4 from the hydrogel. Permeation of these nanocarriers from hydrogel matrix showed significant permeation of Piroxicam through mice skin.

Conclusion: It can be concluded that ES100 based pH-sensitive nanoparticles have potential to be delivered through transdermal route.  相似文献   


11.
The purpose of this work is to develop novel lipid-based self-nanoemulsifying drug delivery systems (SNEDDS) as carriers for transdermal delivery of curcumin. SNEDDS containing black seed oil, medium chain mono- and diglycerides and surfactants, were prepared as curcumin delivery vehicles. Their formation spontaneity, morphology, droplet size, and drug loading were evaluated. Gel preparation containing two of the SNEDDS formulations were used in the carrageenan induced paw edema to evaluate the anti-inflammatory effect. Results showed droplet size as low as 71?nm. The highest drug loading was observed with SNEDDS-F6 of ~45?mg/g. In in-vivo investigation, SNEDDS-F6 exhibited significant anti-inflammatory activities in terms of 80% reduction in paw edema when compared with positive control. The prepared SNEDDS with the elevated entrapment efficiency, good transdermal penetration ability could be a suitable candidate for effective transdermal curcumin skin delivery.  相似文献   

12.
Methods: The thermodynamic, eutectic, and crystalline properties of ibuprofen and ketoprofen binary mixtures were investigated using differential scanning calorimetry (DSC) and X-ray powder diffractometry (XRPD). Results: The DSC studies showed that melting point (61°C), enthalpy (11.3 kJ/mol), and entropy of fusion (33.7 J/K/mol) of the binary eutectic were significantly lower than those of the individual anti-inflammatory drugs (NSAIDs). Due to the melting-point depression and enhanced skin lipid solubility, the steady-state flux of ibuprofen and ketoprofen from preparations of the binary eutectic increased as compared to pure NSAIDs using shed snakeskin as a model membrane. The NSAID membrane flux values were calculated by flux ratio equations based on drug thermodynamic data, and compared to experimental values obtained from permeation studies. Conclusion: The proposed flux ratio equations correctly predicted flux increase.  相似文献   

13.
Phyllanthin, a poorly water-soluble herbal active component from Phyllanthus amarus, exhibited a low oral bioavailability. This study aims at formulating self-microemulsifying drug delivery systems (SMEDDS) containing phyllanthin and evaluating their in-vitro and in-vivo performances. Excipient screening was carried out to select oil, surfactant and co-surfactant. Formulation development was based on pseudo-ternary phase diagrams and characteristics of resultant microemulsions. Influences of dilution, pH of media and phyllanthin content on droplet size of the resultant emulsions were studied. The optimized phyllanthin-loaded SMEDDS formulation (phy-SMEDDS) and the resultant microemulsions were characterized by viscosity, self-emulsification performance, stability, morphology, droplet size, polydispersity index and zeta potential. In-vitro dissolution and oral bioavailability in rats of phy-SMEDDS were studied and compared with those of plain phyllanthin. Phy-SMEDDS consisted of phyllanthin/Capryol 90/Cremophor RH 40/Transcutol P (1.38:39.45:44.38:14.79) in % w/w. Phy-SMEDDS could be emulsified completely within 6?min and formed fine microemulsions, with average droplet range of 27–42?nm. Phy-SMEDDS was robust to dilution and pH of dilution media while the resultant emulsion showed no phase separation or drug precipitation after 8?h dilution. The release of phyllanthin from phy-SMEDDS capsule was significantly faster than that of plain phyllanthin capsule irrespective of pH of dissolution media. Phy-SMEDDS was found to be stable for at least 6 months under accelerated condition. Oral absorption of phyllanthin in rats was significantly enhanced by SMEDDS as compared with plain phyllanthin. Our study indicated that SMEDDS for oral delivery of phyllanthin could be an option to enhance its bioavailability.  相似文献   

14.
In this study, cinnamic acid-loaded transfersomes were prepared and dermal microdialysis sampling was used in Sprague–Dawley rats to compare the amount of drug released into the skin using transfersomes as transdermal carriers with that released on using conventional liposomes. The formulation of cinnamic acid-loaded transfersomes was optimized by a uniform design through in vitro transdermal permeation studies. Hydration time was confirmed as a significant factor influencing the entrapment efficiency of transfersomes, further affecting their transdermal flux in vitro. The fluxes of cinnamic acid from transfersomes were all higher than those from conventional liposomes, and the flux from the optimal transfersome formulation was 3.01-fold higher than that from the conventional liposomes (p?in vivo microdialysis sampling method revealed that the dermal drug concentrations from transfersomes applied on various skin regions were much lower than those required with conventional liposomes. After the administration of drug-containing transfersomes and liposomes on abdominal skin regions of rats for a period of 10?h, the Cmax of cinnamic acid from the compared liposomes was 3.21?±?0.25?μg/mL and that from the transfersomes was merely 0.59?±?0.02?μg/mL. The results suggest that transfersomes can be used as carriers to enhance the transdermal delivery of cinnamic acid, and that these vehicles may penetrate the skin in the complete form, given their significant deformability.  相似文献   

15.
于树芳  顾鑫  伍国琳  王亦农  高辉  马建标 《功能材料》2012,43(11):1414-1417
通过大分子引发开环聚合和侧基改性,制备了一种侧链含有吗啉丙基的聚乙二醇-聚(吗啉丙基-天冬酰胺)-聚丙氨酸三嵌段共聚物。利用肿瘤细胞外、细胞内和正常组织pH值环境的差异,调节聚合物载药纳米粒子的结构和性能实现肿瘤部位靶向释放的目的。在水溶液中,此聚合物可自组装形成一种核-壳-冠型的3层共聚物胶束,其中疏水性的聚丙氨酸链段自聚集形成胶束的核,聚(吗啉丙基-天冬酰胺)链段形成具有pH值-响应性的壳层,用于包埋和释放药物,外围的聚乙二醇链段可以提供一个稳定的水合冠层,延长药物的体内循环时间。以阿霉素作为模型药物在自组装的过程中包埋到胶束内。研究发现,由于吗啉环在酸性条件下的质子化导致链段亲疏水性质发生明显变化,载药胶束的药物释放能力随环境pH值的降低药物的释放速率显著增加。  相似文献   

16.
Context: A stable topical ophthalmic curcumin formulation with high solubility, stability, and efficacy is needed for pharmaceutical use in clinics.

Objectives: The objective of this article was to describe a novel curcumin containing a nanomicelle formulation using a polyvinyl caprolactam–polyvinyl acetate–polyethylene glycol (PVCL–PVA–PEG) graft copolymer.

Methods: Nanomicelle curcumin was formulated and optimized and then further evaluated for in vitro cytotoxicity/in vivo ocular irritation, in vitro cellular uptake/in vivo corneal permeation, and in vitro antioxidant activity/in vivo anti-inflammatory efficacy.

Results: The solubility, chemical stability, and antioxidant activity were greatly improved after the encapsulation of the PVCL–PVA–PEG nanomicelles. The nanomicelle curcumin ophthalmic solution was simple to prepare and the nanomicelles are stable to the storage conditions, and it had good cellular tolerance. Nanomicelle curcumin also had excellent ocular tolerance in rabbits. The use of nanomicelles significantly improved in vitro cellular uptake and in vivo corneal permeation as well as improved anti-inflammatory efficacy when compared with a free curcumin solution.

Conclusions: These findings indicate that nanomicelles could be promising topical delivery systems for the ocular administration of curcumin.  相似文献   


17.
The aim of this work is to develop curcumin-loaded hollow mesoporous silica microspheres (HMSMs@curcumin) to improve the poor oral bioavailability of curcumin. Hollow mesoporous silica microspheres (HMSMs) were synthesized in facile route using a hard template. HMSMs and HMSMs@curcumin were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), nitrogen adsorption/desorption measurements, differential scanning calorimetry (DSC), Fourier transform infrared (FTIR), and X-ray diffraction (XRD). In addition, to demonstrate the potential application of the HMSMs@curcumin, cytotoxicity, in vitro release behavior and in vivo pharmacokinetics of curcumin loaded in these HMSMs were investigated by using of Caco-2 cells and Sprague-Dawley (SD) rats, respectively. These mono-dispersed HMSMs exhibited high drug loading ratio and encapsulation efficiency due to the mesoporous shell and hollow core. The excellent characteristics of HMSMs such as mono-dispersed morphology, smooth surface, uniform, ordered and size-narrowing mesopores resulted in a good in vitro release profile of curcumin from HMSMs@curcumin. Moreover, an impressive improvement in the oral absorption of curcumin and prolonged systemic circulation time were achieved in the in vivo animal studies. In addition, the good biocompatibility of developed HMSMs with Caco-2 cells was confirmed based on the in vitro cytotoxicity assay. In conclusion, this system demonstrated a great potential for efficient delivery of curcumin in vitro and in vivo, suggesting a good prospect for its application in clinic for therapeutic drug delivery in future.  相似文献   

18.
Objective: This study deals with the preparation and evaluation of a pluronic lecithin organogel (PLO gel) containing ricinoleic acid for the transdermal eyelid delivery of dexamethasone and tobramycin.

Methods: Five different PLO gel formulations (F1, F2, F3, F4 and F5) containing tobramycin (0.3%) and dexamethasone (0.1%) were prepared and compared to a conventional PLO gel (light mineral oil PLO gel, F6) with respect to physical appearance and viscosity. The optimized ricinoleic acid PLO gel formulation (F2) was further characterized for pH, gelation temperature, morphology and drug content. Ex vivo permeability of dexamethasone and bactericidal activity of tobramycin from formulation F2 was tested, and values were compared to the marketed Tobradex® eye ointment.

Results: No apparent changes in the physical appearance and consistency were observed when ricinoleic acid was used as the oil phase. The pH of the optimized ricinoleic acid PLO gel (formulation F2) was found to be 6.54 with a gelation temperature of 31?°C. The drug content of tobramycin and dexamethasone were found to be 102.8% and 100.14%, respectively. The penetration profile of dexamethasone from formulation F2 was found to be much higher than the marketed Tobradex® eye ointment. F2 showed a better antimicrobial activity and higher zones of inhibition when compared to the marketed Tobradex® eye ointment.

Conclusion: The findings of this investigation indicate that the ricinoleic acid PLO gel has the potential for use as a transdermal eyelid delivery system.  相似文献   

19.
用于肺部给药的壳聚糖空心微球的制备   总被引:9,自引:0,他引:9  
采用壳聚糖为壁材、烷基多糖苷为赋形剂通过喷雾干燥的方法成功制备出了可用于肺部给药的空心载药微球,其粒径在10μm左右。采用扫描电子纤维镜观察了所得粒子的形貌,并分析了喷雾干燥条件下得到这种薄壁空心结构的原理。  相似文献   

20.
Background: Cytarabine is a deoxycytidine analogue commonly used in the treatment of hematological malignant diseases. Its clinical utility, however, is severely limited by its short plasma half-life because of the catabolic action of nucleoside deaminases. Method: In this study, N4-carbamate derivatives of cytarabine (1) were synthesized and evaluated for transdermal penetration because this mode of administration may circumvent its limitations. The synthesis of these compounds was achieved in a two-step process. First, the methoxypoly(ethylene glycol) was activated by p-nitrophenyl chloroformate. Second, the activated intermediates were reacted with cytarabine in the presence of N-hydroxysuccinamide to give the N4-methoxypoly(ethylene glycol) carbamate derivatives. The transdermal flux values of the N4-carbamates of cytarabine were determined in vitro by Franz diffusion cell methodology. Aqueous solubility and log D (pH 7.4) values were determined and assessed for correlation with transdermal flux values. Results: The synthesized carbamates, particularly, (9)–(13), showed increased solubility in both aqueous and lipid media. Log D values decreased as the oxyethylene chain lengthened. Conclusion: Although none of the derivatives showed significantly higher transdermal penetration than cytarabine (1), it should be mentioned that the mean for cytarabine N4-methoxyethyleneoxycarbamate (8) was 10 times higher and the median was 2 times higher.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号