首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Energy》2004,29(8):1105-1115
This paper presents the wind data analysis for five coastal locations of the Kingdom of Saudi Arabia, namely Dhahran, Yanbo, Al-Wajh, Jeddah, and Gizan. The data analysis utilized hourly mean values of wind speed and wind direction covering a period of almost 14 years between 1970 and 1983. The data were validated in terms of completeness, continuity, erroneous values, etc. The analyses include seasonal and diurnal changes in wind speed values. Energy calculations and capacity factors were also determined for wind machines of different sizes between 150 and 2500 kW. It was found that Yanbo is the best location, among the sites analyzed, for harnessing the power of wind, while Dhahran is the next best location. The other three locations were found to have more or less the same results.  相似文献   

2.
In this study, wind characteristics were analyzed using the wind speed data collected of the six meteorological stations in Turkey during the period 2000–2006. The annual mean wind speed of the six stations (Erzurum, Elaz??, Bingöl, Kars, Manisa and Ni?de) is obtained as 8.7, 8.5, 5.9, 6.9, 7.4 and 8.0 m/s at 10 m height, respectively. The mean annual value of Weibull shape parameter k is between 1.71 and 1.96 while the annual value of scale parameter c is between 6.81 and 9.71 m/s. A technical assessment has been made of electricity generation from four wind turbines having capacity of (600 kW, 1000 kW, 1500 kW and 2000 kW). The yearly energy output and capacity factor for the four different turbines were calculated.  相似文献   

3.
In the wake of rising cost of oil and fears of its exhaustion coupled with increased pollution, the governments world-wide are deliberating and making huge strides to promote renewable energy sources such as solar–photovoltaic (solar–PV) and wind energy. Integration of diesel systems with hybrid wind–PV systems is pursued widely to reduce dependence on fossil-fuel produced energy and to reduce the release of carbon gases that cause global climate change. Literature indicates that commercial/residential buildings in the Kingdom of Saudi Arabia (KSA) consume an estimated 10–40% of the total electric energy generated. The study reviews research work carried out world-wide on wind farms and solar parks. The work also analyzes wind speed and solar radiation data of East-Coast (Dhahran), KSA, to assess the technical and economic potential of wind farm and solar PV park (hybrid wind–PV–diesel power systems) to meet the load requirements of a typical commercial building (with annual electrical energy demand of 620,000 kWh). The monthly average wind speeds range from 3.3 to 5.6 m/s. The monthly average daily solar global radiation ranges from 3.61 to 7.96 kWh/m2. The hybrid systems simulated consist of different combinations of 100 kW wind machines, PV panels, supplemented by diesel generators. NREL (and HOMER Energy's) HOMER software has been used to perform the techno-economic study. The simulation results indicate that for a hybrid system comprising of 100 kW wind capacity (37 m hub-height) and 40 kW of PV capacity together with 175 kW diesel system, the renewable energy fraction (with 0% annual capacity shortage) is 36% (24% wind + 12% PV). The cost of generating energy (COE, $/kWh) from this hybrid wind–PV–diesel system has been found to be 0.154 $/kWh (assuming diesel fuel price of 0.1$/L). The study exhibits that for a given hybrid configuration, the number of operational hours of diesel generators decreases with increase in wind farm and PV capacity. Attention has also been focused on wind/PV penetration, un-met load, excess electricity generation, percentage fuel savings and reduction in carbon emissions (relative to diesel-only situation) of different hybrid systems, cost break-down of wind–PV–diesel systems, COE of different hybrid systems, etc.  相似文献   

4.
This paper analyses the potential and the feasibility basis for the wind energy resources in some locations of coastal regions of Turkey. The dominant wind directions, the mean values, wind speeds, wind potential and the frequency distributions were determined. The results showed that Bal?kesir and Çanakkale among annual averages show higher value of mean wind speed. The mean annual value of Weibull shape parameter k is between 1.54 and 1.86 while the annual value of scale parameter c is between 2.52 m/s and 8.34 m/s. A technical assessment has been made of electricity generation from four wind turbines having capacity of 600 kW, 1500 kW, 2000 kW and 2500 kW. The yearly energy output and capacity factor for the four different turbines were calculated.  相似文献   

5.
Egypt is one of the Red Sea and Mediterranean countries having windy enough areas, in particular along the coasts. The coastal location Ras Ghareb on the Red Sea has been investigated in order to know the wind power density available for electricity generation. To account for the wind potential variations with height, a new simple estimating procedure was introduced. This study has explicitly demonstrated the presence of high wind power density nearly 900 kW/m2 per year at 100 m of altitude for this region. Indeed, the seasonal wind powers available are comparable to and sometimes higher than the power density in many European cities for wind electricity applications like Vindeby (Denmark) and also America.New technical analysis for wind turbine characteristics have been made using three types of commercial wind turbines possessing the same rotor diameter and rated power to choice the best wind machine suitable for Ras Ghareb station. As per the decreasing the cut-in wind speed for the wind turbine used, the availability factor increases for a given generator. That it could produce more energy output throughout the year for the location.The aim of this research, was to predict the electrical energy production with the cost analysis of a wind farm 150 MW total power installed at Ras Ghareb area using 100 wind turbines model (Repower MD 77) with 1.5 MW rated power. Additionally, this paper developed the methodology for estimating the price of each kWh electricity from the wind farms. Results show that this wind park will produce maximum energy of 716 GWh/year. The expected specific cost equal to 1.5 € cent/kWh is still less than and very competitive price with that produced from the wind farms in Great Britain and Germany and at the international markets of wind power. The important result derived from this study encourages several wind parks with hundreds of megawatts can be constructed at Ras Ghareb region.  相似文献   

6.
This paper presents long-term analysis of wind speed data in terms of annual, seasonal and diurnal variations at Tindouf, which is situated on the south west region of Algeria. The wind speed data was collected over a period of 08 years between 1976 and 1984. The study showed that the long-term seasonal wind speeds were found to be relatively higher during September compared to other months. The diurnal change in long-term mean wind speed indicated that higher electricity could be produced during 09:00–18:00 h, which also coincides with higher electricity demand period. The annual wind energy production and capacity factor, obtained using wind speed frequency distribution and wind power curve of 1000 kW wind turbine and RETScreen software were found comparable with each other if unadjusted energy production values calculated by the software were used rather than the renewable energy delivered. Development of wind farm of 30 MW installed capacity at this site could result into avoidance of 23,252 tonnes/year of CO2 equivalents GHG from entering into the local atmosphere thus creating a clean and healthy atmosphere for local inhabitants.  相似文献   

7.
In this study, wind characteristic and wind energy potential of the Uluda? skinning which is located in the south Marmara region of Turkey were analyzed using the wind speed data collected during the period 2000–2006. The wind speed distribution curves of Uluda?-Bursa were obtained by using the Weibull and Rayleigh probability density functions. The average Weibull shape parameter k and scale parameter c were found as 1.78 and 7.97 m/s for the period 2000–2006. The yearly mean wind speed in Uluda?-Bursa was obtained as 7.08 m/s for period of 7 years. A technical and economic assessment has been made of electricity generation from four wind turbines having capacity of (600, 1000, 1500 and 2000 kW). The yearly energy output, capacity factor and the electrical energy cost of kW h produced by the three different turbines were calculated. The cost of each kW h produced using the chosen wind turbines in Uluda?-Bursa were found to between 0.255 and 0.306 $/kW h.  相似文献   

8.
The electric power generation of co-located offshore wind turbines and wave energy converters along the California coast is investigated. Meteorological wind and wave data from the National Buoy Data Center were used to estimate the hourly power output from offshore wind turbines and wave energy converters at the sites of the buoys. The data set from 12 buoys consists of over 1,000,000 h of simultaneous hourly mean wind and wave measurements. At the buoys, offshore wind farms would have capacity factors ranging from 30% to 50%, and wave farms would have capacity factors ranging from 22% to 29%. An analysis of the power output indicates that co-located offshore wind and wave energy farms generate less variable power output than a wind or wave farm operating alone. The reduction in variability results from the low temporal correlation of the resources and occurs on all time scales. Aggregate power from a co-located wind and wave farm achieves reductions in variability equivalent to aggregating power from two offshore wind farms approximately 500 km apart or two wave farms approximately 800 km apart. Combined wind and wave farms in California would have less than 100 h of no power output per year, compared to over 1000 h for offshore wind or over 200 h for wave farms alone. Ten offshore farms of wind, wave, or both modeled in the California power system would have capacity factors during the summer ranging from 21% (all wave) to 36% (all wind) with combined wind and wave farms between 21% and 36%. The capacity credits for these farms range from 16% to 24% with some combined wind and wave farms achieving capacity credits equal to or greater than a 100% wind farm because of their reduction in power output variability.  相似文献   

9.
Wind shear coefficients and energy yield for Dhahran, Saudi Arabia   总被引:2,自引:0,他引:2  
This study presents calculated values of wind shear coefficients (WSE) using measured values of wind speed at 20, 30, and 40 m above ground level (AGL), for Dhahran, Saudi Arabia. The study also includes the air density estimated using measured air temperature and surface pressure and effect of wind shear coefficient on energy yield from a wind farm of 60 MW installed capacity developed using 40 wind turbines of 1500 kW size. The data used in the determination of wind shear coefficient covered a period of almost 5 years between 4 October 1995 and 30 November 2000.The study suggests a value of 0.189 of wind shear coefficient for the calculation of wind speed at different heights if measured values are known at one height. No regular seasonal trend was observed in the values of wind shear coefficients. In case of diurnal variation, higher values were observed during nighttime and early hours of the day and comparatively smaller values during day light hours. The air density, calculated using measured temperature and pressure was found to be 1.18 kg/m3. The energy yield obtained using RetScreen software, showed that the actual wind shear coefficient presented in this paper produced around 11–12% more energy compared to that obtained using 1/7 power law. Accordingly, 2–3% higher plant capacity factors were achieved using actual site-dependent wind shear coefficient instead of 1/7th wind power law exponent for the calculation of wind speed at hub-height.  相似文献   

10.
The current load shedding in Ghana has led to decreasing productivity leading to economic and social crisis due to Ghana’s dependency on hydroelectric power as its main source of power. Incorporating renewable energy sources to the grid installed capacity will ease the burden on Ghanaians. In this study, the potentiality and economic feasibility of wind farm project were evaluated in 11 locations in Ghana. The study employed wind-speed data using Meteonorm 7 software in a Typical Meteorological Year 2 format and analyzed with RETScreen Clean Energy Project Analysis modeling software. 10 MW of VESTAS V90 Wind turbine model with a rated power of 2,000 kW was proposed, which, when developed and harnessed, will drastically boost productivity of businesses, industries, and the transport sector in Ghana whilst making significant contribution to the export earnings of the country.  相似文献   

11.
This paper introduces an accurate procedure to choose the best site from many sites and suitable wind turbines for these sites depending on the minimum price of kWh generated (Energy Cost Figure (ECF)) from wind energy system. In this paper a new proposed computer program has been introduced to perform all the calculations and optimization required to accurately design the wind energy system and matching between sites and wind turbines. Some of cost calculations of energy methods have been introduced and compared to choose the most suitable method. The data for five sites in Saudi Arabia and hundred wind turbines have been used to choose the best site and the optimum wind turbine for each site. These sites are Yanbo, Dhahran, Dhulom, Riyadh, and Qaisumah. One hundred wind turbines have been used to choose the best one for each site. This program is built in a generic form which allows it to be used with unlimited number of sites and wind turbines in all over the world. The program is written by using Visual Fortran and it is verified with simple calculation in Excel. The paper showed that the best site is Dhahran and the suitable wind turbine for this site is KMW-ERNO with 5.85 Cents/kWh. The worst site to install wind energy system is Riyadh with minimum price of kWh of 12.81 Cents/kWh in case of using GE Energy 2 wind turbine.  相似文献   

12.
The combined utilization of renewables such as solar and wind energy is becoming increasingly attractive and is being widely used for substitution of oil-produced energy, and eventually to reduce air pollution. In the present investigation, hourly wind-speed and solar radiation measurements made at the solar radiation and meteorological monitoring station, Dhahran (26°32′N, 50°13′E), Saudi Arabia, have been analyzed to study the impact of key parameters such as photovoltaic (PV) array area, number of wind machines, and battery storage capacity on the operation of hybrid (wind + solar + diesel) energy conversion systems, while satisfying a specific annual load of 41,500 kWh. The monthly average wind speeds for Dhahran range from 4.1 to 6.4 m/s. The monthly average daily values of solar radiation for Dhahran range from 3.6 to 7.96 kWh/m2. Parametric analysis indicates that with two 10 kW wind machines together with three days of battery storage and photovoltaic deployment of 30 m2, the diesel back-up system has to provide about 23% of the load demand. However, with elimination of battery storage, about 48% of the load needs to be provided by diesel system.  相似文献   

13.
Solar energy and wind are likely to play an important role in the future energy generation in Oman. This article assesses wind power cost per kWh of energy produced using four types of wind machines at 27 locations within Oman. These sites cover all regions in Oman. Hourly values of wind speed recorded between 2000 and 2009, in most cases, were used for all 27 locations. Wind duration curves were developed and utilized to calculate the cost per kWh of energy generated from four chosen wind machines. It was found that the cost of energy is low in the south and middle regions of Oman compared with that in the north region. The most promising sites for the economic harnessing of wind power are Thumrait, Qairoon Hairiti, Masirah, and Sur, with an energy cost of less than 0.117 US$/kWh when 2000 kW, 1500 kW, 850 kW, or 250 kW wind turbines are used.  相似文献   

14.
《Energy Conversion and Management》2005,46(15-16):2501-2513
In view of rising costs, pollution and fears of exhaustion of oil and coal, governments around the world are encouraging to seek energy from renewable/sustainable energy sources such as wind. The utilization of energy from wind (since the oil embargo of the 1970s) is being widely disseminated for displacement of fossil fuel produced energy and to reduce atmospheric degradation. A system that consists of a wind turbine and Diesel genset is called a Wind–Diesel power system.The literature indicates that the commercial/residential buildings in Saudi Arabia consume an estimated 10–40% of the total electric energy generated. In the present study, the hourly mean wind-speed data of the period 1986–1997 recorded at the solar radiation and meteorological station, Dhahran (26°32′N, 50°13′E in the Eastern Coastal Region of Saudi Arabia), has been analyzed to investigate the potential of utilizing hybrid (Wind–Diesel) energy conversion systems to meet the load requirements of a hundred typical two bedroom residential buildings (with annual electrical energy demand of 3512 MWh). The long term monthly average wind speeds for Dhahran range from 4.2 to 6.4 m/s. The hybrid systems considered in the present case study consist of different combinations/clusters of 150 kW commercial wind machines supplemented with battery storage and Diesel back-up. The deficit energy generated by the Diesel generator (for different battery capacities) and the number of operational hours of the Diesel system to meet a specific annual electrical energy demand of 3512 MWh have also been presented. The evaluation of the hybrid system shows that with seven 150 kW wind energy conversion system (WECS) and one day of battery storage, the Diesel back-up system has to provide 21.6% of the load demand. Furthermore, with three days of battery storage, the Diesel back-up system has to provide 17.5% of the load demand. However, in the absence of battery storage, about 37% of the load needs to be provided by the Diesel system. The study also places emphasis on the monthly average daily energy generation from different sizes (150 kW, 250 kW, 600 kW) of wind machines to identify the optimum wind machine size from the energy production point of view. It has been noted that for a given 6 MW wind farm size (for 50 m hub height), a cluster of forty 150 kW wind machines yields about 48% more energy as compared to a cluster of ten 600 kW wind machines.  相似文献   

15.
This paper, presents the analysis of wind speed data and available energy in Rafha area using wind machines of 600, 1000 and 1500 kW sizes from three manufacturers. The long-term annual mean values of wind speeds were found to vary between a minimum of 2.5 m/s in the year 2002 and a maximum of 4.9 m/s in 1990. The frequency distribution showed that wind remained silent for 7% of the time on an average during 24 years of data period and 35% between 0 and 3.5 m/s. Wind speed remained above 3.5 m/s for 65% of the time and only 20% of the times above 6.5 m/s. The annual wind energy production and plant capacity factors, obtained using different methods and wind machines of three sizes and from three manufacturers are also discussed and compared.  相似文献   

16.
C. G. Justus 《Solar Energy》1978,20(5):379-386
The performance characteristics have been simulated for large dispersed arrays of 500–1500 kW wind turbines producing power and feeding it directly into the New England or Central U.S. utility distribution grids. These studies, based on design power performance curves, indicate that in good wind environments the 500 kW generators can average (on an annual basis) up to 240 kW mean power output, and the 1500 kW generators can average up to 350 kW mean power output. Higher mean power output (averaging up to 470 kW) is indicated, however from a hypothetical 1125 kW rated power unit designed to operate at wind speeds near those observed throughout the study area, rather than the higher design operating wind speed of the 1500 kW unit. The beneficial effect of operating large disperse arrays of wind turbines is that available power output can be increased—if winds are not blowing over one part of the array, chances are they will over some other part of the array. These studies indicate that wind power availability levels of 200 kW per 1125 kW generator were 77–93 per cent, depending on season. Reasonably steady high wind power in winter and high afternoon peak wind power in summer (corresponding to peak air conditioning load) means that significant peak load displacement can be achieved without the use of storage.  相似文献   

17.
S. Emeis 《风能》2010,13(5):459-469
The analytical top‐down wind park model by Emeis and Frandsen 1 is enhanced by consistently making both the downward momentum flux and the momentum loss at the rough surface dependent on atmospheric stability. Specifying the surface roughness underneath the turbines in a wind farm in the model gives the opportunity to investigate principal differences between onshore and offshore wind parks, because the roughness length of the sea surface is two to three orders of magnitude lower than the roughness length of land surfaces. Implications for the necessary distance between single turbines in offshore wind farms and the distance between neighbouring wind parks are computed. It turns out from the model simulations that over smooth surfaces offshore the wind speed reduction at hub height in a wind farm is larger than over rough onshore surfaces given the same density of turbines within the park. Mean wind profiles within the park are also calculated from this model. Offshore wind farms must have a larger distance between each other in order to avoid shadowing effects of the upstream farm. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
由于能源供应紧张和气候变化等因素影响,风力资源利用正受到全球性的广泛关注和热情实践。2009年全球风电装机容量新增3750×104kW,总装机容量达到1.58×108kW,同比增长31%;预计2020年全球风电装机将达到12.31×108kW,年装机达到1.5×108kW,风力发电量将占全球发电总量的12%。至2009年,中国风电装机容量累计达2600×104kW,预计到2020年风电占全国电力总装机容量的比例将达到10%左右。发展以风电、光电等可再生能源为主的新能源产业,是应对金融危机的有效途径,同时也是能源结构调整的必然选择。玉门市可供开发利用的风能资源储量在2000×104kW以上,全国首座千万千瓦级风电基地一期工程已在玉门开工奠基,为建设风、光、火、核互补的新能源基地创造了有利条件,但同时调峰电源、输出电网、电量消纳等问题也制约着其风电产业的健康快速发展。从全国情况看,存在风电产业成长与电网建设不协调、风电技术研发和设备制造能力不强、配套政策不完善等问题。建议国家应强化政策支持,把风电及其配套产业纳入国民经济发展规划统筹考虑,加大对技术研发的支持力度。  相似文献   

19.
For the development of the energy infrastructure of remote isolated consumers, an expedient solution is the creation of a modular hybrid energy system based on renewable energy sources, which will save tens of billions of rubles a year by saving expensive diesel fuel. Taking into account the high wind energy resource in these territories, the use of wind power plants as part of that system is justified. The article discusses the methodology for substantiating the parameters and modes of operation of an autonomous wind-diesel power complex based on the territorial-power classification of power supply systems and a 4-level methodology for optimizing parameters, an example of upgrading an existing diesel power plant in the Arkhangelsk region is given. The existing diesel units with a capacity of 1300 kW were replaced by a modular wind-diesel power system with a high renewable penetration level (58%) with four wind turbines with a capacity of 200 kW and a storage system with a capacity of 65 kWh. This made it possible to achieve a diesel fuel replacement share of 232 000 L per year, which in monetary terms in 2021 prices is 25 million rubles per year. As a promising direction, a variant of the territorial development of the energy sector of the Leshukonsky district of the Arkhangelsk region based on wind energy with the possibility of producing up to 100 tons of “green” hydrogen annually is considered. Various options for reducing harmful emissions in the region were considered, the maximum use of local resources allows saving up to 22 000 tons of CO2e per year.  相似文献   

20.
Hourly mean wind-speed data for the period 1986–1997 [except the years 1989 (some data is missing) and 1991 (Gulf War)] recorded at the solar radiation and meteorological monitoring station, Dhahran (26°C 32′ N, 50° 13′ E), Saudi Arabia, have been analyzed to investigate the optimum size of battery storage capacity for hybrid (wind+diesel) energy conversion systems at Dhahran. The monthly average wind speeds for Dhahran range from 4.12 to 6.42 m/s. As a case study, the hybrid system considered in the present analysis consists of two 10 kW Wind Energy Conversion Systems (WECS), together with a battery storage system and a diesel back-up. The yearly and monthly average energy generated from the above hybrid system have been presented. More importantly, the study explores the impact of variation of battery storage capacity on hybrid power generation. The results exhibit a trade-off between size of the storage capacity and diesel power to be generated to cope with specific annual load distribution [41,500], and for given energy generation from WECS. The energy to be generated from the back-up diesel generator and the number of operational hours of the diesel system to meet a specific annual electrical energy demand have also been presented. The diesel back-up system is operated at times when the power generated from WECS fails to satisfy the load and when the battery storage is depleted. The present study shows that for economic considerations, for optimum use of battery storage and for optimum operation of diesel system, storage capacity equivalent to one to three days of maximum monthly average daily demand needs to be used. It has been found that the diesel energy to be generated without any storage is considerably high; however, use of one day of battery storage reduces diesel energy generation by about 35%; also the number of hours of operation of the diesel system are reduced by about 52%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号