首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report on a new electrochemical cell setup, combined with a portable UHV chamber, for in situ x-ray diffraction using synchrotron radiation. In contrast to more traditional electrochemical sample preparation schemes, atomically clean and well-ordered surfaces are routinely prepared by UHV methods, even in the case of reactive elements or alloys. Samples can be transferred from larger UHV systems into the portable chamber without exposure to ambient air. They can then be studied successively in UHV, in controlled gas atmospheres, and in contact with electrolyte solutions under applied electrochemical potential. The electrochemical setup employs a droplet geometry, which guarantees good electrochemical conditions during in situ x-ray measurements combined with voltammetry. We present first experimental results of Cu deposition on GaAs(001) and on freshly produced nanometric Pd(001) islands on Cu(0.83)Pd(0.17)(001), respectively.  相似文献   

2.
We have developed a versatile experimental apparatus for synchrotron x-ray measurements in pulsed high magnetic fields. The apparatus consists of a double cryostat incorporating a liquid nitrogen bath to cool the miniature pulsed coil and an independent helium flow cryostat allowing sample temperatures from 4 up to 250 K. The high duty cycle miniature pulsed coils can generate up to 38 T. During experiments at 30 T a repetition rate of 6 pulsesmin was routinely reached. Using a 4 kJ power supply, the pulse duration was between 500 mus and 1 ms. The setup was used for nuclear forward scattering measurements on 57Fe up to 25 T on the ESRF beamline ID18. In another experiment, x-ray magnetic circular dichroism was measured up to 30 T on the ESRF energy dispersive beamline ID24.  相似文献   

3.
Today's structural biology techniques require averaging over millions of molecules to obtain detailed structural information. Derivation of the molecular structure from a scattering experiment with just one single 3D-molecule imposes major challenges. Coherent and damage-free radiation is needed to ensure sufficient elastic scattering events before destroying the molecule and a means to solve the phase problem is wanted. We have devised such a scheme using coherent low-energy electrons shaped into a collimated beam by an electrostatic microlens. Initial experiments using a carbon nanotube sample demonstrate the feasibility of coherent low-energy electron diffraction on an individual nanometer-sized object.  相似文献   

4.
Synchrotron‐generated X‐rays provide scientists with a multitude of investigative techniques well suited for the analysis of the composition and structure of all types of materials and specimens. Here, we describe the properties of synchrotron‐generated X‐rays and the advantages that they provide for qualitative morphological research of millimetre‐sized biological organisms and biomaterials. Case studies of the anatomy of insect heads, of whole microarthropods and of the three‐dimensional reconstruction of the cuticular tendons of jumping beetles, all performed at the beamline ID19 of the European Synchrotron Radiation Facility (ESRF), are presented to illustrate the techniques of phase‐contrast tomography available for anatomical and structural investigations. Various sample preparation techniques are described and compared and experimental settings that we have found to be particularly successful are given. On comparing the strengths and weaknesses of the technique with traditional histological thin sectioning, we conclude that synchrotron radiation microtomography has a great potential in biological microanatomy.  相似文献   

5.
A new experimental setup has been developed to enable in situ studies of catalyst surfaces during chemical reactions by means of surface x-ray diffraction (SXRD) and grazing incidence small angle x-ray scattering. The x-ray reactor chamber was designed for both ultrahigh-vacuum (UHV) and reactive gas environments. A laser beam heating of the sample was implemented; the sample temperature reaches 1100 K in UHV and 600 K in the presence of reactive gases. The reactor equipment allows dynamical observations of the surface with various, perfectly mixed gases at controlled partial pressures. It can run in two modes: as a bath reactor in the pressure range of 1-1000 mbars and as a continuous flow cell for pressure lower than 10(-3) mbar. The reactor is connected to an UHV preparation chamber also equipped with low energy electron diffraction and Auger spectroscopy. This setup is thus perfectly well suited to extend in situ studies to more complex surfaces, such as epitaxial films or supported nanoparticles. It offers the possibility to follow the chemically induced changes of the morphology, the structure, the composition, and growth processes of the model catalyst surface during exposure to reactive gases. As an example the Pd(8)Ni(92)(110) surface structure was followed by SXRD under a few millibars of hydrogen and during butadiene hydrogenation while the reaction was monitored by quadrupole mass spectrometry. This experiment evidenced the great sensitivity of the diffracted intensity to the subtle interaction between the surface atoms and the gas molecules.  相似文献   

6.
A. Howie 《Ultramicroscopy》2011,111(7):761-767
The understanding and where possible the minimisation of decoherence mechanisms in electron microscopy were first studied in plasmon loss, diffraction contrast images but are of even more acute relevance in high resolution TEM phase contrast imaging and electron holography. With the development of phase retrieval techniques they merit further attention particularly when their effect cannot be eliminated by currently available energy filters. The roles of electronic excitation, thermal diffuse scattering, transition radiation and bremsstrahlung are examined here not only in the specimen but also in the electron optical column. Terahertz-range aloof beam electronic excitation appears to account satisfactorily for recent observations of decoherence in electron holography. An apparent low frequency divergence can emerge for the calculated classical bremsstrahlung event probability but can be ignored for photon wavelengths exceeding the required coherence distance or path lengths in the equipment. Most bremsstrahlung event probabilities are negligibly important except possibly in large-angle bending magnets or mandolin systems. A more reliable procedure for subtracting thermal diffuse scattering from diffraction pattern intensities is proposed.  相似文献   

7.
We present a versatile system for the preparation of oxide crystal surfaces in the ultra-high vacuum (UHV) at temperatures up to 1300 K. Thermal treatment is accomplished by direct current heating of a tantalum foil in contact with the oxide sample. The sample temperature is measured by a thermocouple at a position close to the crystal and its reading is calibrated against the surface temperature determined by a second thermocouple temporarily attached to the surface. The design of the sample holder is based on a transferable plate originally developed for a commercial UHV scanning probe microscope. The system is, however, also suitable for the use with electron spectroscopy or electron diffraction based surface analytical techniques. We present results for the high-temperature preparation of CeO(2)(111) surfaces with atomically flat terraces exhibiting perfect atomic order and cleanliness as revealed by non-contact atomic force microscopy (NC-AFM) imaging. NC-AFM imaging is, furthermore, used to demonstrate the temperature-controlled aggregation of gold atoms on the CeO(2)(111) surface and their evaporation at high temperatures.  相似文献   

8.
A finely focused angstrom-sized coherent electron probe produces a convergent beam electron diffraction pattern composed of overlapping orders of diffracted disks that sensitively depends on the probe position within the unit cell. By incoherently averaging these convergent beam electron diffraction patterns over many probe positions, a pattern develops that ceases to depend on lens aberrations and effective source size, but remains highly sensitive to specimen thickness, tilt, and polarity. Through a combination of experiment and simulation for a wide variety of materials, we demonstrate that these position averaged convergent beam electron diffraction patterns can be used to determine sample thicknesses (to better than 10%), specimen tilts (to better than 1 mrad) and sample polarity for the same electron optical conditions and sample thicknesses as used in atomic resolution scanning transmission electron microscopy imaging. These measurements can be carried out by visual comparison without the need to apply pattern-matching algorithms. The influence of thermal diffuse scattering on patterns is investigated by comparing the frozen phonon and absorptive model calculations. We demonstrate that the absorptive model is appropriate for measuring thickness and other specimen parameters even for relatively thick samples (>50 nm).  相似文献   

9.
大尺寸衍射光学元件的扫描离子束刻蚀   总被引:1,自引:1,他引:0  
总结了大尺寸衍射光学元件离子束刻蚀技术的研究进展。针对自行研制的KZ-400离子束刻蚀装置,提出了组合石墨束阑结构和多位置分步刻蚀策略来提高离子束刻蚀深度的均匀性,目前在450mm尺寸内的刻蚀深度均匀性最高可达±1%。建立了针对多层介质膜光栅的衍射强度一维空间分布在线检测系统以及用于透射衍射光学元件离子束刻蚀深度的等厚干涉在线检测系统,实现了对大尺寸衍射光学元件离子束刻蚀终点的定量、科学控制,提高了元件离子束刻蚀工艺的成功率。利用上述技术,成功研制出一系列尺寸的多层介质膜光栅、光束采样光栅、色分离光栅以及同步辐射光栅等多种衍射光学元件。  相似文献   

10.
The imaging of crystal defects by high-resolution transmission electron microscopy or with the help of the electron diffraction contrast technique is well known and routinely used. However, a direct and phenomenological analysis of electron micrographs is mostly not possible, but requires the application of image simulation and matching techniques. The trial-and-error matching technique is the indirect solution to the direct scattering problem applied to analyse the nature of the object under investigation. Alternatively, inverse problems as direct solutions of electron scattering equations can be deduced using either an invertible linearized eigenvalue system or a discretized form of the diffraction equations. This analysis is based on the knowledge of the complex electron wave at the exit plane of an object reconstructed for the surrounding of single reflections by electron holography or other wave reconstruction techniques. In principle, it enables directly the retrieval of the local thickness and orientation of a sample as well as the refinement of potential coefficients or the determination of the atomic displacements, caused by a crystal lattice defect, relative to the atom positions of the perfect lattice. Considering especially the sample orientation as perturbation the solution is given by a generalized and regularized Moore–Penrose inverse, where the resulting numerical algorithms imply ill-posed inverse problems.  相似文献   

11.
In this paper a method for collecting electron diffraction patterns using a Gatan imaging filter is presented. The method enables high-quality diffraction data to be measured at scattering angles comparable to those that can be obtained using X-ray and neutron diffraction. In addition, the method offers the capability for examining small regions of sample in, for example, thin films and nano-structures. Using X-ray, neutron and electron diffraction data collected from the same sample, we demonstrate quantitative agreement between all three. We also present a novel method for obtaining the single scattering contribution to the total diffracted intensity by collecting data at various electron wavelengths. This approach allows pair distribution functions to be determined from electron diffraction in cases where there exists significant multiple scattering.  相似文献   

12.
An energy analyzer has been constructed and operated in UHV for the purpose of analyzing the energy of neutral atoms scattered from solid surfaces. The analyzer consists of a LiF single crystal located at an angle close to the normal to the sample crystal so that the diffraction pattern obtained by scanning the LiF crystal yields the energy of the scattered atoms. Two designs which have been used are described. The temperature of both sample and analyzer crystal is near 20 K and once cleaned they can be maintained in the state of initial preparation for many weeks. The sample was a (001) Cu surface in this case. Such an energy analyzer can only be used, in most cases, for He atom scattering although Ne atoms could be used if the scattered intensities were adequate. The detector developed in this study is able to detect about 2x10(5) atoms/s. The resolution of the spectrometer depends on the incident energy of the atom and is about 1 meV at an incident energy of 23 meV. This resolution can be improved by a factor of 3 to 4 by cooling the nozzle to a temperature lower than 77 K and using variable size slits which can be inserted into the beam path.  相似文献   

13.
U Pietsch  O H Seeck 《光学精密工程》2007,15(12):1900-1907
介绍了第三代同步辐射高分辨率X射线衍射光束线的总体设计。给出了高分辨率衍射的基本原理并描述了获得确定光子能量的近平行高强度X射线光束线所必需的光学元件。特别是用X射线动力学理论,解释了双晶及四次反射晶体单色器。作为一个实例,介绍了将于2009年开始在德国汉堡运行的一个新的同步辐射源PETRAⅢ的高分辨率衍射(HighRes)光束线的设置情况。通过优化光学部件,对微米尺寸光束,q空间的分辨减小到Δq=10-5 nm-1,光通量大于1011 cts/s。  相似文献   

14.
The combination of high-brilliance synchrotron radiation with scanning tunneling microscopy opens the path to high-resolution imaging with chemical, electronic, and magnetic contrast. Here, the design and experimental results of an in-situ synchrotron enhanced x-ray scanning tunneling microscope (SXSTM) system are presented. The system is designed to allow monochromatic synchrotron radiation to enter the chamber, illuminating the sample with x-ray radiation, while an insulator-coated tip (metallic tip apex open for tunneling, electron collection) is scanned over the surface. A unique feature of the SXSTM is the STM mount assembly, designed with a two free-flex pivot, providing an angular degree of freedom for the alignment of the tip and sample with respect to the incoming x-ray beam. The system designed successfully demonstrates the ability to resolve atomic-scale corrugations. In addition, experiments with synchrotron x-ray radiation validate the SXSTM system as an accurate analysis technique for the study of local magnetic and chemical properties on sample surfaces. The SXSTM system's capabilities have the potential to broaden and deepen the general understanding of surface phenomena by adding elemental contrast to the high-resolution of STM.  相似文献   

15.
We analyze the contrast reversal of Kikuchi bands that can be seen in electron backscatter diffraction (EBSD) patterns under specific experimental conditions. The observed effect can be reproduced using dynamical electron diffraction calculations. Two crucial contributions are identified to be at work: First, the incident beam creates a depth distribution of incoherently backscattered electrons which depends on the incidence angle of the beam. Second, the localized inelastic scattering in the outgoing path leads to pronounced anomalous absorption effects for electrons at grazing emission angles, as these electrons have to go through the largest amount of material. We use simple model depth distributions to account for the incident beam effect, and we assume an exit angle dependent effective crystal thickness in the dynamical electron diffraction calculations. Very good agreement is obtained with experimental observations for silicon at 20 keV primary beam energy.  相似文献   

16.
Spence JC  Howells MR 《Ultramicroscopy》2002,93(3-4):213-222
The soft X-ray spectral region and the useful range of electron energy-loss spectroscopy are very similar, both including the energy range 100-1000 eV. Moreover, well-developed monochromators and parallel detection devices with comparable resolution exist for both. Despite the differing interactions of electrons and photons, many complementary experiments in imaging, spectroscopy and diffraction have been performed using both techniques. We therefore compare the brightness, degeneracy, monochromaticity, beam size, source size, spatial and temporal coherence of field-emission electron beams and soft X-ray synchrotron radiation from typical undulators. Recent brightness values for nanotip field emitters and undulators, both measured and calculated, are provided with examples from the Advanced Light Source synchrotron-radiation facility at Berkeley USA. The quantum mechanical upper limit on source brightness, as well as relationships among beam brightness, coherence parameters, and degeneracy, are discussed. Factors which limit these parameters and methods of measurement are reviewed, and the implications for diffraction, imaging and spectroscopic experiments as well as radiation damage are briefly commented on.  相似文献   

17.
A scanning transmission electron microscope (STEM) produces a convergent beam electron diffraction pattern at each position of a raster scan with a focused electron beam, but recording this information poses major challenges for gathering and storing such large data sets in a timely manner and with sufficient dynamic range. To investigate the crystalline structure of materials, a 16×16 analog pixel array detector (PAD) is used to replace the traditional detectors and retain the diffraction information at every STEM raster position. The PAD, unlike a charge-coupled device (CCD) or photomultiplier tube (PMT), directly images 120–200 keV electrons with relatively little radiation damage, exhibits no afterglow and limits crosstalk between adjacent pixels. Traditional STEM imaging modes can still be performed by the PAD with a 1.1 kHz frame rate, which allows post-acquisition control over imaging conditions and enables novel imaging techniques based on the retained crystalline information. Techniques for rapid, semi-automatic crystal grain segmentation with sub-nanometer resolution are described using cross-correlation, sub-region integration, and other post-processing methods.  相似文献   

18.
Three techniques are used to measure crystallographic preferred orientations (CPO) in a naturally deformed quartz mylonite: transmitted light cross‐polarized microscopy using an automated fabric analyser, electron backscatter diffraction (EBSD) and neutron diffraction. Pole figure densities attributable to crystal‐plastic deformation are variably recognizable across the techniques, particularly between fabric analyser and diffraction instruments. Although fabric analyser techniques offer rapid acquisition with minimal sample preparation, difficulties may exist when gathering orientation data parallel with the incident beam. Overall, we have found that EBSD and fabric analyser techniques are best suited for studying CPO distributions at the grain scale, where individual orientations can be linked to their source grain or nearest neighbours. Neutron diffraction serves as the best qualitative and quantitative means of estimating the bulk CPO, due to its three‐dimensional data acquisition, greater sample area coverage, and larger sample size. However, a number of sampling methods can be applied to FA and EBSD data to make similar approximations.  相似文献   

19.
A method for studying the internal structure of a sample by detecting scattered synchrotron radiation using a pinhole camera is considered. The beam for imaging is shaped like a plane that intersects the sample. The characteristic spatial resolution of the method is 100 μm. Examples of the obtaining of images are presented, and the differences of this method from traditional techniques are discussed.  相似文献   

20.
The mechanisms of electron beam scattering are examined to evaluate its effect on contrast and resolution in high-pressure scanning electron microscopy (SEM) techniques reported in the literature, such as moist-environment ambient-temperature SEM (MEATSEM) or environmental SEM (ESEM). The elastic and inelastic scattering cross-sections for nitrogen are calculated in the energy range 5–25 keV. The results for nitrogen are verified by measuring the ionization efficiency, and measurements are also made for water vapour. The effect of the scattered beam on the image contrast was assessed and checked experimentally for a step contrast function at 20 kV beam voltage. A considerable degree of beam scattering can be tolerated in high-pressure SEM operation without a significant degradation in resolution. The image formation and detection techniques in high-pressure SEM are considered in detail in the accompanying paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号