首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 992 毫秒
1.
This paper presents a hydrodynamic and water quality modeling system for Wissahickon Creek, Pa. Past data show that high nutrient levels in Wissahickon Creek were linked to large diurnal fluctuations in oxygen concentration, which combining with the deoxygenation effect of carbonaceous biological oxygen demand (CBOD) causes violations of dissolved oxygen (DO) standards. To obtain quantitative knowledge about the cause of the DO impairment, an integrated modeling system was developed based on a linked environmental fluid dynamics code (EFDC) and water quality simulation program for eutrophication (WASP/EUTRO5) modeling framework. The EFDC was used to simulate hydrodynamic and temperature in the stream, and the resulting flow information were incorporated into the WASP/EUTRO5 to simulate the fate and transport of nutrients, CBOD, algae, and DO. The standard WASP/EUTRO5 model was enhanced to include a periphyton dynamics module and a diurnal DO simulation module to better represent the prototype. The integrated modeling framework was applied to simulate the creek for a low flow period when monitoring data are available, and the results indicate that the model is a reasonable numerical representation of the prototype.  相似文献   

2.
This study examined the effects of uncertain model boundary conditions on dissolved oxygen (DO) predictions for the lower Truckee River, Nevada using an augmented version of the EPA’s Water Quality Analysis Simulation Program Version 5 (WASP5) that included periphyton, or attached algae, in eutrophication kinetics. Uncertainty analyses were performed on selected organic nitrogen (ON) and carbonaceous biochemical oxygen demand boundary conditions using Monte Carlo techniques. The stochastic model was run using boundary concentrations assigned from observed probability distributions. Ranges of simulated values were used to construct confidence intervals, the magnitudes of which indicated the uncertainty associated with model predictions. Uncertainty in agricultural ditch return concentrations had minimal effects on in-stream model predictions, as predicted values of daily minimum and maximum DOs, daily average ON, and periphyton biomass all failed to show significant variability as a result of ditch concentration uncertainty. This result indicates that while ditch return nutrient loads are not trivial, their exact concentrations are not needed to make relatively accurate predictions of in-stream DO. However, uncertainty in the upstream ON boundary did result in significant uncertainty during summer months with regard to in-stream model predictions of ON, periphyton biomass, and DO. The model is clearly more sensitive to changes in this boundary than to changes in agricultural ditch concentrations.  相似文献   

3.
A robust eutrophication and sediment diagenesis model has been developed for the Patuxent Estuary to study the impact of different nutrient loadings on phytoplankton biomass and dissolved oxygen (DO) levels. The modeling approach was to begin with an existing water quality model (CE-QUAL-W2) for the Patuxent Estuary (hereafter referred to as the Estuary). First, formulations for the water column kinetics were completely replaced with routines based on the WASP/EUTRO5 water quality model. Then, a sediment diagenesis component was added to simulate the accumulation and mineralization of organic matter in the sediment, the generation of sediment oxygen demand, and the flux of phosphate and ammonia from the sediment. Loadings from the tributaries for nutrients and flow were based on a combination of watershed modeling and sampling by scientists at the Smithsonian Environmental Research Center. The new model was able to reproduce the ambient water quality data from 1997 to 1999 by adequately simulating the high concentrations of phytoplankton and low DO levels in the Estuary. The model was then used to evaluate the response to various hypothetical nutrient loading scenarios. Model results show that phytoplankton growth in the upper Estuary is much more sensitive to nutrient loading from tributaries than in the lower estuary. Further, model results indicate that DO concentrations in the lower Estuary are largely influenced by levels of nutrients and organic carbon at the mouth of the Estuary.  相似文献   

4.
Diel dissolved oxygen (DO) concentrations and temperature were sensed at high-frequency and modeled in an eastern Iowan stream, Clear Creek, in an agricultural setting. The magnitude of the diel changes in DO and temperature were largest at the upstream (headwater) station. Inclusion of temperature change factors increased the accuracy of modeling results and yielded estimates of the reaeration rate constant, primary production rate, and respiration rate. The DO modeling of the high-frequency measurements (15-min intervals) revealed a temperature-driven nonlinear reaeration process that led to increases in nighttime DO concentrations. The DO modeling results from three sensing stations in the watershed revealed decreasing trends in primary productivity, respiration, and the reaeration rate constant with increasing drainage area. Light extinction from suspended solids was the main factor limiting net primary production. As a result, the P/R ratio also decreased with increasing drainage area. High-frequency sensor data and DO modeling revealed the effects of temperature and watershed scale on the primary factors that dictate diel DO dynamics in a stream setting.  相似文献   

5.
We propose a model of the development of a periphyton community in a stream under the influence of nutrients and light. Coupling the model with a nutrient transport model clarified the longitudinal distribution of both periphyton community and nutrients. The thickness of the periphyton mat, an important factor regulating nutrient exchange between the mat and overflowing water, was determined from water velocity and the periphyton biomass. We compared the results of this study with three observational data sets to overall validate our proposal: (1) a comparison of electrical conductance in two channels with different periphyton biomasses validated the model in the mass exchange between stationary and flowing water zones; (2) a comparison of the temporal variation in periphyton biomass and nutrient concentration in a once-through and a re-circulated water channel, validated the relationships among the periphyton biomass, the nutrient uptake rate, and the nutrient concentrations in the stationary water zone; and (3) a longitudinal distribution of the algal species composition of Stigeoclonium and Chamaesiphon, and the nutrient concentrations of a 140 m reach was reproduced and compared with measured data. The light intensity indirectly controlled the nutrient gradients along the stream by the periphyton biomass in the third application.  相似文献   

6.
Nutrient loads enter the lower Truckee River of western Nevada, affecting the growth of attached algae (periphyton) which causes depressed nighttime dissolved oxygen (DO) levels. The lower Truckee River is home to the endangered cui-ui and threatened Lahontan cut-throat trout, with DO standards being established to in part protect these species. Hydrodynamics, nutrient concentrations, periphyton biomass, and DO data spanning August 2000–December 2001 were used to calibrate and verify a modified version of the Water Quality Analysis Simulation Program Version 5 (WASP5). Under typical loading conditions the periphyton community is nitrogen limited, however nitrogen loading from an upstream wastewater treatment facility increased greatly during the analysis period due to approved site construction activities (discharge permit excursion) causing the periphyton community to temporarily become phosphorus limited. The developed modeling approach, with limited calibration, was able to accurately track dynamic system responses. Removing the impact of the noted discharge permit excursion resulted in a minimum computed DO value of 4.13?mg/L, occurring at the downstream end of the modeling domain on August 8, 2001. Additionally removing the impact of all nutrient loads from area agriculture resulted in a predicted minimum DO value of 4.54?mg/L, while also shifting its location significantly upstream and its timing to April 26, 2001. Meeting all prescribed DO standards required establishing a minimum in-stream flow value of 1.81?m3/s (64.0?ft3/s) downstream of Derby Dam.  相似文献   

7.
Nutrient enrichment of the South Umpqua River, Oregon was linked to periphyton growth and large diel fluctuations in dissolved oxygen and hydrogen ion (pH) concentrations using the water quality model QUAL2Kw. The available data provide a good case study for the relatively new water quality model. QUAL2Kw simulates a dynamic diel heat budget and water quality kinetics for a one-dimensional, steady-flow system and is part of a family of models meant to serve as an update to the widely used QUAL2E. The model was used to quantify nonpoint source loading, determine the pollutant of concern, estimate natural conditions, and calculate a phosphorus total maximum daily load during summer, low-flow conditions. Control of both nonpoint and point sources is required to achieve the low instream phosphorus concentrations necessary to meet water quality criteria. To our knowledge, this is the first paper that reports on the application of a model for computing the maximum allowable load necessary to manage the diel variation in pH.  相似文献   

8.
The development of water quality models, and also the nature of water quality impairment, is uniquely presented in the point source dissolved oxygen (DO) modeling completed in the Jackson River (Virginia) over the past 50?years. Various water quality modeling studies have been completed in the Jackson River over the years starting with the earliest of modeling frameworks, the Streeter–Phelps equation (1950s and 1960s); progressing to a biochemical oxygen demand–DO model (1970s and 1990s) including diurnal photosynthetic effects (DIURNAL); a Monte Carlo DO analysis using the DIURNAL model (1990s); to the most recent modeling that is currently developing a periphyton model to assess the impact of nutrient loadings on the periphyton community and ultimately DO levels (2000). These early modeling studies were completed by such modeling forefathers as Clarence J. Velz and Donald J. O'Connor, both completing their work at academic institutions (Manhattan College and the University of Michigan) and private consulting firms (Hydroscience and HydroQual, Inc.). Interesting to note is that Earle B. Phelps taught Clarence J. Velz, Donald J. O’Connor’s eventual professor at Manhattan College. Other work completed on the river by early environmental engineers included reaeration studies by Ernest C. Tsivoglou (1966) and the first activated sludge wastewater treatment design for a pulp and paper mill by Wesley Eckenfelder (1950s). The studies investigated: how to improve existing DO conditions in the river; the effects of color reductions on diurnal DO swings; proposed upstream flow regulation effects on water quality and river temperature; and the impact of instream oxygen addition.  相似文献   

9.
A spatially distributed and continuous hydrologic model focusing on total maximum daily load (TMDL) projects was developed. Hydrologic models frequently used for TMDLs such as the hydrologic simulation program—FORTRAN (HSPF), soil and water assessment tool (SWAT), and generalized watershed loading function (GWLF) differ considerably in terms of spatial resolution, simulated processes, and linkage flexibility to external water quality models. The requirement of using an external water quality model for simulating specific processes is not uncommon. In addition, the scale of the watershed and water quality modeling, and the need for a robust and cost-effective modeling framework justify the development of alternative watershed modeling tools for TMDLs. The hydrologic and water quality integration tool (HydroWAMIT) is a spatially distributed and continuous time model that incorporates some of the features of GWLF and HSPF to provide a robust modeling structure for TMDL projects. HydroWAMIT operates within the WAMIT structure, developed by Omni Environmental LLC for the Passaic River TMDL in N. J. HydroWAMIT is divided into some basic components: the hydrologic component, responsible for the simulation of surface flow and baseflow from subwatersheds; the nonpoint-source (NPS) component, responsible for the calculation of the subwatershed NPS loads; and the linkage component, responsible for linking the flows and loads from HydroWAMIT to the water quality analysis simulation program (WASP). HydroWAMIT operates with the diffusion analogy flow model for flow routing. HydroWAMIT provides surface runoff, baseflow and associated loads as outputs for a daily timestep, and is relatively easy to calibrate compared to hydrologic models like HSPF. HydroWAMIT assumes that the soil profile is divided into saturated and unsaturated layers. The water available in the unsaturated layer directly affects the surface runoff from pervious areas. Surface runoff from impervious areas is calculated separately according to precipitation and the impervious fractions of the watershed. Baseflow is given by a linear function of the available water in the saturated zone. The utility of HydroWAMIT is illustrated for the North Branch and South Branch Raritan River Watershed (NSBRW) in New Jersey. The model was calibrated, validated, and linked to the WASP. The NPS component was tested for total dissolved solids. Available weather data and point-source discharges were used to prepare the meteorological and flow inputs for the model. Digital land use, soil type datasets, and digital elevation models were used for determining input data parameters and model segmentation. HydroWAMIT was successfully calibrated and validated for monthly and daily flows for the NSBRW outlet. The model statistics obtained using HydroWAMIT are comparable with statistics of HSPF and SWAT applications for medium and large drainage areas. The results show that HydroWAMIT is a feasible alternative to HSPF and SWAT, especially for large-scale TMDLs that require particular processes for water quality simulation and minor hydrologic model calibration effort.  相似文献   

10.
Modeling the Effects of Macrophytes on Hydrodynamics   总被引:1,自引:0,他引:1  
A computer model was created as a scientific and management tool for understanding the effects of macrophytes on hydrodynamics and water quality. A model was required that could simulate macrophytes in a complex water body and could be coupled to a multicompartment water quality model of phytoplankton, dissolved oxygen, nutrients, pH, and organic matter. This would permit the investigation of water resource issues where macrophyte growth, phytoplankton growth, nutrient loadings, and flood control were all contributing factors. The model was added as a compartment to the U.S. Army Corps of Engineers two-dimensional, laterally averaged, dynamic water quality model, CE-QUAL-W2 (Corps of Engineers, water quality, width averaged, two dimensional) and applied to the Columbia Slough, Ore. Features of the macrophyte model include the capability to simulate multiple submerged macrophyte species; transport of nutrient fluxes between plant biomass and the water column and/or sediments; growth limitation due to nutrient, light and temperature; simulation of the spatial distribution of macrophytes vertically and horizontally; the modeling of light attenuation in the water column caused by macrophyte concentration; and the modeling of open channel flow with channel friction due to macrophytes. The macrophyte model was tested through mass balances and sensitivity analyses. The modeling of channel friction was evaluated by comparing predicted water levels with data from tests conducted in a laboratory flume. Use of the model in the Columbia Slough showed reasonable predictive capability regarding estimated biomass and water level dynamics.  相似文献   

11.
Major ion and nutrient concentration monitoring and estimation are important factors in management and interpretations on river health, particularly in the context of total maximum daily load limits. Spatial and temporal (daily, seasonally, yearly, etc.) variations commonly complicate investigations and can produce unrepresentative results, particularly in systems with large seasonal or daily variation in river parameters or concentrations as a result of physical loading or biogeochemical activity (e.g., photosynthesis and respiration). This study combines an observed relationship between electrical conductivity and major ions, including nitrate, and continuous colorimetric estimation of ammonium and phosphate to permit cost-effective real-time estimation of river concentrations for major ions and nutrients for surface water quality monitoring. Data collected from sites both up- and downstream of a major city were used to evaluate the method. Constant total dissolved solids (TDS) to electrical conductivity (EC) relationships were observed at both the upgradient (TDS = 696EC; r2 = 0.93) and downgradient (TDS = 684EC; r2 = 0.90) sites. The resulting predicted estimations of major ion and nutrient concentrations for each site had average errors of less than 5%. Combining this method with a modified continuous colorimetric method for ammonia and phosphate allows for the continuous estimation of major ion and nutrient concentrations in a river system.  相似文献   

12.
 Potentiodynamic polarization measurement was used to investigate effects of temperature, dissolved oxygen concentration and pH on the electrochemical behavior of X70 pipeline steel in simulated solution according to the orthogonal testing method. The results showed that temperature, dissolved oxygen concentration and pH had great influence on corrosion current density (icorr) of X70 steel. Corrosion current density of X70 steel was most influenced by dissolved oxygen concentration in simulated solution. The corrosion degree of X70 steel was least under the environment of low temperature, deficit oxygen and weak acid.  相似文献   

13.
Excessive quantities of nutrients in urban storm-water runoff can lead to problems such as eutrophication in receiving water bodies. Accurate process based models are difficult to construct due to the vast array of complex phenomena affecting nutrient concentrations. Furthermore, it is often impossible to successfully apply process based models to catchments with limited or no sampling. This has created the need for simple models capable of predicting nutrient concentrations at unmonitored catchments. In this study, simple statistical models were constructed to predict six different types of nutrients present in urban storm-water runoff: ammonia (NH3), nitrogen oxides (NOx), total Kjeldahl nitrogen, total nitrogen, dissolved phosphorus, and total phosphorus. Models were constructed using data from the United States, collected as a part of the Nationwide Urban Stormwater Program more than two decades ago. Comparison between the models revealed that regression models were generally more applicable than the simple estimates of mean concentration from homogeneous subsets, separated based upon land use or the metropolitan area. Regression models were generally more accurate and provided valuable insight into the most important processes influencing nutrient concentrations in urban storm-water runoff.  相似文献   

14.
Potentiodynamic polarization measurement was used to investigate the effects of temperature, dissolved ox-ygen concentration and pH on the electrochemical behavior of X70 pipeline steel in simulated solution according to the orthogonal testing method. The results showed that temperature, dissolved oxygen concentration and pH had great influence on corrosion current density (icorr)of X70 steel. Corrosion current density of X70 steel was most influenced by dissolved oxygen concentration in simulated solution. The corrosion degree of X70 steel was the least under the environment of low temperature, deficient oxygen and weak acid.  相似文献   

15.
为探究海绵城市植物技术设施对重金属及营养盐净化能力,以江心洲南京生态科技岛河道系统为研究对象,对其上下游水体中重金属及营养盐含量进行分析,通过综合污染指数法对上下游重金属风险进行评估,采用冗余分析及Spearman相关系数探究水体环境因素对重金属含量的影响,利用河道区域四种植物技术设施(河岸缓冲带、植被过滤带、生态浮岛、台地式石笼护岸)探究不同植物组合对水体中污染物的净化能力。结果显示,江心洲河道上游重金属的枯水期、丰水期及平水期WQI值分别为1.85、1.74及2.90,分别对应为重金属轻度污染、轻度污染及中度污染。而河道下游重金属的枯水期、丰水期及平水期的WQI值分别为0.18、0.30及0.52,均未存在污染现象。河道上游水体中pH是影响重金属含量的最重要因素,pH与溶解氧(DO)、总氮(TN)、五日化学需氧量(COD5)及总磷(TP)呈正相关。河道下游水体的pH也是影响水中重金属含量最重要的环境因素,其与溶解氧(DO)呈显著正相关。水体中营养盐净化能力大小为河岸缓冲带>植被过滤带>生态浮岛>台地式石笼护岸。相比其它植物组合,乔灌木群落栽植对水体中营养盐净化最具有潜力。  相似文献   

16.
This study examined nutrient fluxes between sediment and water with a laboratory-scale benthic chamber. This research targeted an artificial lake that had undergone water-quality problems. Two sites at Lake Asan, Site A in the vicinity of the dam and Site B at the inflow of the lake, were selected and characteristics of the sediments and their influence on the water quality of the lake were evaluated. Most of the inorganic phosphorus in the study area was in the form of apatite and nonapatite phosphorus (91.9% of Site A, 83.3% of Site B). Site B, with a fast-stream velocity, had larger particle size, smaller nutrient level, and smaller amounts of inorganic phosphorus than Site A. The benthic chamber experiment showed that overall fluxes of Site A were as follows: ammonia is 0.003??μmol?cm-2?day-1, nitrate is -0.067??μmol?cm-2?day-1, and phosphate is 1.049??nmol?cm-2?day-1. Site B showed an increase in phosphate concentration after a dissolved oxygen (DO) drop (<3??mg/l), which resulted in smaller negative nitrate fluxes (-0.043??μmol?cm-2?day-1), larger positive ammonia (0.137??μmol?cm-2?day-1), and larger phosphate fluxes (2.120??nmol?cm-2?day-1) than at Site A. The movement of nutrients at the sediment-water interface was more sensitive to environmental conditions such as DO than other factors, such as sediment characteristics and chemical forms of nutrients. On the basis of the fluxes obtained from the benthic chamber, positive values are estimated for both phosphorus and nitrogen release rates. This indicates that during the sampling period sediment acted as a source of nitrogen as well as phosphorus to the overlying waterbody.  相似文献   

17.
The empirical biochemical oxygen demand (BOD) equation is expressed as a multiorder reaction equation of order n, then is combined with the dissolved oxygen mass balance equation to give the differential form of an oxygen sag equation for small rivers and streams for which dispersion can be neglected. The value of n in the BOD reaction is restricted to values that are larger than one (first order). The dissolved oxygen sag equation is verified with two published dissolved oxygen sag models by setting n equal to 3/2 (three-halves order BOD reaction), and n equal to 2 (second order BOD reaction). The proposed dissolved oxygen sag equation may be applied to test the BOD and dissolved oxygen models in large, complex numerical models, such as models used in developing total maximum daily load recommendations. Examples show how the BOD reaction order affects the dissolved oxygen sag characteristics of a river.  相似文献   

18.
This study examines the air temperature/stream temperature relationship at a geographically diverse set of streams. We evaluate the general temperature relationships (both linear and nonlinear) that apply to these streams, and then examine how changes in stream temperature associated with climate variability or climate warming might affect dissolved oxygen levels. The majority of streams showed an increase in water temperature of about 0.6–0.8°C for every 1°C increase in air temperature, with very few streams displaying a linear 1:1 air/water temperature trend. For most of the streams, a nonlinear model produced a better fit than did a simple linear model. Understanding the relationship between air temperature and water temperature is important if people want to estimate how stream temperatures are likely to respond to anticipated future increases in surface air temperature. Surface water temperature in many streams will likely increase 2 to 3°C as air temperature increases 3 to 5°C. At sites with currently low dissolved oxygen content, an increase in summer stream temperatures could cause the dissolved oxygen levels to fall into a critically low range, threatening the health of many aquatic species.  相似文献   

19.
Truckee Meadows Water Reclamation Facility (TMWRF) is a 150,000?m3/day (40?mgd) tertiary wastewater treatment facility that serves the cities of Reno and Sparks, Nev. The effluent from TMWRF is discharged into the Truckee River which flows to Pyramid Lake—a very sensitive ecosystem and habitat for endangered species. Reverse osmosis (RO) and nanofiltration (NF), in conjunction with ultrafiltration (UF) pretreatment, were evaluated for total dissolved solids (TDS) and nutrient removal from the effluent of TMWRF at bench and pilot scale. Results from short-term pilot-scale tests showed that RO and NF membrane processes can successfully remove both TDS and nutrients from the effluent when paired with coagulation-enhanced UF pretreatment. NF membranes were able to achieve the necessary removal while maintaining higher fluxes and lower specific power consumption.  相似文献   

20.
Based on a set of Chesapeake Bay Estuarine Model (CBEM) scenarios, a three-dimensional response surface of a water quality index, such as chlorophyll concentration, versus a pair of loading constituents, e.g., nitrogen and phosphorus, is constructed. The responses of water quality, such as dissolved oxygen, chlorophyll, and water clarity, to nitrogen, phosphorus, and sediment loads are analyzed. From the response surface, a water quality response is estimated under loading conditions beyond that of a limited set of scenarios. Response surfaces may be used to determine the possible universe of nutrient and sediment load reductions needed to obtain a particular water quality standard and to examine the tradeoffs among nutrient and sediment load reductions that achieve the same water quality objective.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号