首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
In this research work, the capability of low-temperature plasma (LTP) as an ionization source for ion mobility spectrometry (IMS) has been investigated for the first time. This new ionization source enhances the potential of IMS as a portable analytical tool and allows direct analysis of various chemical compounds without having to evaporate the analyte or seek a solvent or reagent whatsoever. The effects of parameters such as the flow rate of the discharge gas, plasma voltage, and positioning of the LTP on the IMS signal were investigated. The positive reactant ions generated by the LTP ionization source were similar to those created in a corona discharge ionization source, where the proton clusters ((H(2)O)(n)H(+)) are the most abundant reactant ion, and in the negative mode, in addition to a saturated electron peak, several negative reactant ions (e.g., NO(x)(-)) were observed too. These reactant ions subsequently ionized the gaseous samples directly and liquids or solids after evaporation by plasma desorption. The ion mobility spectra of a few selected compounds, including explosives, drugs, and amines, were obtained to evaluate the new ionization source in positive and negative modes, and the reduced mobility values (K(0)) of the originated ions were calculated. Furthermore, the method has also been applied to obtain the figures of merit for acetaminophen as a test compound. The results obtained are promising enough to ensure the use of LTP as a desorption/ionization source in IMS for analytical applications.  相似文献   

2.
Hearn JD  Smith GD 《Analytical chemistry》2004,76(10):2820-2826
A new technique employing chemical ionization mass spectrometry (CIMS) is described that allows the composition of organic particles to be determined on the time scale of seconds. With this Aerosol CIMS technique, particles are vaporized thermally at temperatures up to 480 degrees C, and the resulting vapor is chemically ionized and detected with a quadrupole mass spectrometer. The separation of the vaporization and ionization steps allows greater control and more flexibility for the detection of condensed phases than with other chemical ionization methods. Consequently, composition can be correlated to volatility, providing an additional dimension of information. The use of a variety of positive and negative reagent ions, such as H(+)(H(2)O)(2), H(+)(CH(3)OH)(2), NO(+), O(2)(+), O(2)(-), F(-), and SF(6)(-), offers flexibility in the detection sensitivity and specificity. Furthermore, the degree of fragmentation of the resulting ion can be controlled, providing more straightforward identification and quantification than with other commonly used methods, such as electron impact ionization. Examples are given of the detection of aerosols consisting of organics with various functionalities, including alkanes, alkenes, alcohols, aldehydes, ketones, and carboxylic acids. Applications of this technique to laboratory studies of atmospherically relevant aerosol reactions are discussed.  相似文献   

3.
Ion mobility spectrometry for monitoring high-purity oxygen   总被引:1,自引:0,他引:1  
The ability of the ion mobility spectrometry (IMS) technique with a negative corona discharge (CD) ion source to detect trace amounts of impurities in high-purity O(2) has been explored. The processes of the formation of negative ions in negative CD IMS have been studied using the ion mobility spectrometry/mass spectrometry (IMS/MS) technique. The CD IMS and CD IMS/MS spectra of 5.0 and 6.0 oxygen with and without additional purification (CO(2) and H(2)O removal) have been measured. It has been proven that the trace amounts of N(2) in high-purity O(2) can be monitored using the CD IMS and/or CD IMS/MS technique.  相似文献   

4.
Dong C  Wang W  Li H 《Analytical chemistry》2008,80(10):3925-3930
A new atmospheric pressure air direct current glow discharge (DCGD) ionization source has been developed for ion mobility spectrometry (IMS) to overcome the regularity problems associated with the conventional (63)Ni source and the instability of the negative corona discharge. Its general electrical characteristics were experimentally investigated. By equipping it to IMS, a higher sensitivity was obtained compared to that of a (63)Ni source and corona discharge, and a linear dynamic range from 20 ppb to 20 ppm was obtained for m-xylene. Primary investigations showed that alkanes, such as pentane, which are nondetectable or insensitively detectable with (63)Ni-IMS, can be efficiently detected by DCGD-IMS and the detection limit of 10 ppb can be reached. The preliminary results have shown that the new DCGD ionization source has great potential applications in IMS, such as online monitoring of environment pollutants and halogenated compounds.  相似文献   

5.
A new MIMS-derived technique, headspace membrane introduction mass spectrometry (HS-MIMS), is described for direct trace level analysis of volatile organic compounds (VOCs) in soil and other dry or wet solid matrixes. A silicone membrane interface is placed about 15 cm from the ion source, and a closed airspace (headspace) is created by connecting a toggle valve to the 1/4 in. tubing that connects the membrane interface to the ion source. For the VOC analysis, the headspace is evacuated and the solid sample vessel is heated to 90 degrees C. The VOCs are rapidly desorbed from the sample, pervaporated through the membrane, and preconcentrated for 4 min in the evacuated headspace. Then, the toggle valve is opened and the trapped VOCs are released into the ion source region of a quadrupole mass spectrometer. By electron ionization and selected-ion monitoring, a relatively sharp and intense peak is obtained and used for quantification. The HS-MIMS analysis shows excellent linearity and reproducibility and detection limits for many VOCs typically of 50-100 ng/kg (ppt).  相似文献   

6.
Detection of volatile organic compounds (VOCs) in aqueous solution at low parts-per-trillion (ppt) levels is accomplished using a very simple and efficient on-line preconcentration cryotrap membrane introduction mass spectrometry (CT-MIMS) system. The conventional MIMS probe is modified so that the membrane interface is placed about 15 cm away from the ion source. A U-shaped trap tube is then inserted between the membrane interface and the ion source. Cryotrapping is performed with liquid nitrogen for 15 min, followed by fast heating at ~15 °C s(-)(1), which thermally releases the condensed VOCs almost at once into the ion source region of a quadrupole mass spectrometer. By applying electron ionization and a selective ion monitoring scan mode, a very sharp and intense peak is obtained. The performance of the CT-MIMS system was compared with that of conventional MIMS, and after reaching the best conditions for the trapping and heating cycles, an improvement factor in signal intensity of about 100 was observed for a series of VOCs. The extraordinary sensitivity of CT-MIMS system allows VOCs to be detected at very low concentrations, detection limits being typically on the order of 10-20 ppt. The results also show excellent linearity and reproducibility for the system.  相似文献   

7.
The method for measurement of ruthenium isotopic composition as RuO(3)(-) by negative thermal ionization mass spectrometry (NTI-MS) is shown to be sensitive and accurate. Precise measurement of the (18)O/(16)O ratio, which is important for oxygen correction in NTI-MS, has also been made. Both Re and Pt filaments were tested, and the latter was proved to be more efficient for negative ion production. The mechanism of ion production with the addition of HI as a reducing reagent and Ba(NO(3))(2) as an ionizing enhancer was also studied. Sensitivity was found to be about 100 times higher than that of the positive mode. Factors related to negative ion formation are discussed, and parameters are optimized. The ionization efficiency has been improved to 0.7%. Ten nanograms of Ru yielded a total ion current of 3 × 10(-12) A for 1 h. The precisions of all Ru isotope ratios with a 100 ng sample size were better than 0.009%.  相似文献   

8.
Charge exchange ionization in conjunction with membrane introduction mass spectrometry provides a sensitive method for the detection of polar volatile organic compounds and semivolatile compounds in air. Sample introduction into an ion trap mass spectrometer was accomplished with a hollow fiber silicone membrane assembly. Atmospheric oxygen, which diffuses through the membrane, was used as the charge exchange reagent. Chemical ionization parameters were optimized using methyl ethyl ketone (2-butanone) standards in air. Several other oxygen-containing compounds, including acetone (2-propanone), methyl isobutyl ketone (4-methyl-2-pentanone), propanal, isopropyl alcohol (2-propanol), cyclohexanol, dimethyl sulfoxide (sulfinylbismethane), 2-(diethylamino)ethanol, and dimethyl methylphosphonate were analyzed with this technique. This method was used to obtain mass spectra for a variety of classes of compounds and produced a 4-20-fold improvement in response for all of the polar compounds we examined when compared to signal obtained from electron ionization.  相似文献   

9.
Biological volatilization of selenium, Se, in a contaminated area is an economical and environmentally friendly approach to phytoremediation techniques, but analytical methods for monitoring and studying volatile compounds released in the process of phytovolatilization are currently limited in their performance. Thus, a new method for real time quantification of trace amounts of the vapors of hydrogen selenide (H(2)Se), methylselenol (CH(3)SeH), dimethylselenide ((CH(3))(2)Se), and dimethyldiselenide ((CH(3))(2)Se(2)) present in ambient air adjacent to living plants has been developed. This involves the characterization of the mechanism and kinetics of the reaction of H(3)O(+), NO(+), and O(2)(+?) reagent ions with molecules of these compounds and then use of the rate constants so obtained to determine their absolute concentrations in air by selected ion flow tube mass spectrometry, SIFT-MS. The results of experiments demonstrating this method on emissions from maize (Zea mays) seedlings cultivated in Se rich medium are also presented.  相似文献   

10.
Tam M  Hill HH 《Analytical chemistry》2004,76(10):2741-2747
The unique capability of secondary electrospray ionization (SESI) as a nonradioactive ionization source to detect analytes in both liquid and gaseous samples was evaluated using aqueous solutions of three common military explosives: cyclo-1,3,5-trimethylene-2,4,6-trinitramine (RDX), nitroglycerin (NG) and pentaerythritol tetranitrate (PETN). The adducts formed between the compounds and their respective dissociation product, RDX.NO(2)(-), NG.NO(3)(-), and PETN.NO(3)(-), gave the most intense signal for the individual compound but were more sensitive to temperature than other species. These autoadducts were identified as RDX.NO(2)(-), NG.NO(3)(-), and PETN.NO(3)(-) and had maximum signal intensity at 137, 100, and 125 degrees C, respectively. The reduced mobility values of the three compounds were constant over the temperature range from 75 to 225 degrees C. The signal-to-noise ratios for RDX, NG, and PETN at 50 mg L(-1) in methanol-water were 340, 270, and 170, respectively, with a nominal noise of 8 +/- 2 pA. In addition to the investigation of autoadduct formation, the concept of doping the ionization source with nonvolatile adduct-forming agents was investigated and described for the first time. The SESI-IMS detection limit for RDX was 116 microg L(-1) in the presence of a traditional volatile chloride dopant and 5.30 microg L(-1) in the presence of a nonvolatile nitrate dopant. In addition to a lower detection limit, the nitrate dopant also produced a greater response sensitivity and a higher limit of linearity than did the traditional volatile chloride dopant.  相似文献   

11.
The on-line determination of volatile and semivolatile organic compounds (SVOCs) is reported using membrane inlet mass spectrometry with in-membrane preconcentration (IMP-MIMS). Semivolatile organic compounds in aqueous samples are preconcentrated in a flow-through silicone hollow-fiber membrane inlet held in a GC oven. The sample stream is replaced with air, and the SVOCs are thermally desorbed into the mass spectrometer by rapid heating of the membrane. The method is evaluated for the on-line determination of 4-fluorobenzoic acid, 3,5-difluorobenzoic acid, 2-chlorophenol, p-tert-butylphenol, and dimethyl sulfoxide (DMSO) in water. The selectivity of the IMP-MIMS technique for SVOCs in the presence of VOCs is demonstrated. Cryotrapping and a rapid gas chromatographic separation step were added between the membrane and the mass spectrometer ion source for the determination of SVOCs in complex mixtures. The procedure is demonstrated for the determination of dimethyl sulfoxide (DMSO) in equine urine, using internal standardization with DMSO-d6. Full-scan electron ionization (EI) mass spectrometric detection showed good linearity (R = 0.998) and RSDs, relative to the internal standard, of 2.2% for desorption only and 4.6% for desorption and cryotrapping.  相似文献   

12.
A recently reported ionization method, comprising an infrared (IR) laser pulse to desorb (LD) analyte species, followed by atmospheric pressure chemical ionization (APCI) with a corona discharge (LD-APCI) to effect ionization of the desorbed neutral analyte molecules, is described for the direct analysis of aqueous peptide solutions. The source employs a heated capillary atmospheric pressure (AP) inlet coupled to a quadrupole ion trap mass spectrometer and allows sampling under normal ambient air conditions. By use of the corona discharge, signals of the atmospheric pressure infrared matrix-assisted laser desorption/ionization (AP-IR-MALDI)-generated analyte protonated molecule were enhanced by factors as large as 1400. In addition, the acid modifier trifluoroacetic acid (TFA) was found to improve the AP-IR-MALDI-generated signal by a factor of approximately 10, whereas the LD-APCI generated signal yielded a 100-fold increase. In this study, the use of the corona discharge is described to enhance the analyte signal generated via AP-IR-MALDI and, as a tool, to probe the gas-phase neutral molecule population generated by the MALDI process. Finally, through the decoupling of desorption from ionization, implications regarding the application of LD-APCI for the direct analysis of numerous new analyte containing matrixes (e.g., polyacrylamide gel electrophoresis (PAGE), tissue, etc.) are discussed.  相似文献   

13.
Vacuum ultraviolet single-photon ionization time-of-flight mass spectrometry (VUV-SPI-TOFMS) has been applied to the detection of volatile organic compounds (VOCs), including aromatic, chlorinated, and oxygenated compounds. Photoionization mass spectra of 23 VOCs were measured using SPI-TOFMS at 10.5 eV (118 nm). The limits of detection of VOCs using SPI-TOFMS at 10.5 eV were estimated to be a few ppbv. The mass spectra of 20 VOCs exhibit only the parent ion and its isotopes' signals. The ionization processes of the VOCs were discussed on the basis of the reaction enthalpies predicted by the quantum chemical calculations. Absolute photoionization cross-sections for 23 VOCs, including 12 newly measured VOCs, at 10.5 eV were determined in comparison to the reported absolute photoionization cross-section of NO.  相似文献   

14.
A novel chemical ionization source for organic mass spectrometry is introduced. This new source uses a glow discharge in the flowing afterglow mode for the generation of excited species and ions. The direct-current gas discharge is operated in helium at atmospheric pressure; typical operating voltages and currents are around 500 V and 25 mA, respectively. The species generated by this atmospheric pressure glow discharge are mixed with ambient air to generate reagent ions (mostly ionized water clusters and NO+), which are then used for the ionization of gaseous organic compounds. A wide variety of substances, both polar and nonpolar, can be ionized. The resulting mass spectra generally show the parent molecular ion (M+ or MH+) with little or no fragmentation. Proton transfer from ionized water clusters has been identified as the main ionization pathway. However, the presence of radical molecular ions (M+) for some compounds indicates that other ionization mechanisms are also involved. The analytical capabilities of this source were evaluated with a time-of-flight mass spectrometer, and preliminary characterization shows very good stability, linearity, and sensitivity. Limits of detection in the single to tens of femtomole range are reported for selected compounds.  相似文献   

15.
The coupling of a rotation planar preparative thin-layer chromatography system on-line with mass spectrometry is demonstrated using a simple plumbing scheme and a self-aspirating heated nebulizer probe of a corona discharge atmospheric pressure chemical ionization source. The self-aspiration of the heated nebulizer delivers approximately 20 microL/min of the 3.0 mL/min eluate stream to the mass spectrometer, eliminating the need for an external pump in the system. The viability of the coupling is demonstrated with a three-dye mixture composed of fat red 7B, solvent green 3, and solvent blue 35 separated and eluted from a silica gel-coated rotor using toluene. The real-time characterization of the dyes eluting from the rotor is illustrated in positive ion full-scan mode. Other self-aspirating ion source systems including atmospheric pressure photoionization, electrospray ionization, and inductively coupled plasma ionization, for example, might be configured and used in a similar manner coupled to the chromatograph to expand the types of analytes that could be ionized, detected, and characterized effectively.  相似文献   

16.
Lazar IM  Lee ML  Lee ED 《Analytical chemistry》1996,68(11):1924-1932
The interfacing of capillary column supercritical fluid chromatography (SFC) to time-of-flight mass spectrometry (TOFMS) through atmospheric pressure chemical ionization (APCI) was investigated. An ion source chamber and a new, flexible, and efficient transfer line from the SFC to the TOFMS system were designed to accommodate the requirements of this study. Ionization of analytes was performed using a corona discharge needle. The interface was equipped with two multiple-axis translation stages for positioning of the transfer line tip and the discharge needle inside the ion chamber. The investigations were oriented toward the optimization of parameters which have a strong effect on the intensity and stability of the analyte signal, including background stability, corona discharge needle positioning in the ion source, transfer line tip and discharge needle relative positioning, curtain gas and makeup gas flow interactions, ion chamber temperature, and elution pressure of analytes from the SFC system.  相似文献   

17.
Surface ionization ion mobility spectrometry   总被引:1,自引:0,他引:1  
A surface ionization (SI) source was designed and constructed for ion mobility spectrometry (IMS). Compared with a conventional (63)Ni source, the surface ionization source is as simple and reliable, has an extended dynamic response range, is more selective in response, and does not have regulatory problems associated with radioactive ionization sources. The performance of this SI-IMS was evaluated with several different classes of compounds. Triethylamine was employed for studying the behavior of the ionization source under different source conditions and gaseous environments. Amines, tobacco alkaloids, and triazine herbicides were also investigated. Picogram level detection limits were achieved for target compounds with a response dynamic range of 5 orders of magnitude. Selective monitoring by IMS was also demonstrated. While the surface ionization source does not have the universality of response that is obtained with a (63)Ni ionization source, it is an excellent nonradioactive alternative for the ionization and ion mobility detection of those compounds to which it responds.  相似文献   

18.
For the first time, the use of a traditional ionization source for ion mobility spectrometry (radioactive nickel ((63)Ni) beta emission ionization) and three alternative ionization sources (electrospray ionization (ESI), secondary electrospray ionization (SESI), and electrical discharge (corona) ionization (CI)) were employed with an atmospheric pressure ion mobility orthogonal reflector time-of-flight mass spectrometer (IM(tof)MS) to detect chemical warfare agent (CWA) simulants from both aqueous- and gas-phase samples. For liquid-phase samples, ESI was used as the sample introduction and ionization method. For the secondary ionization (SESI, CI, and traditional (63)Ni ionization) of vapor-phase samples, two modes of sample volatilization (heated capillary and thermal desorption chamber) were investigated. Simulant reference materials, which closely mimic the characteristic chemical structures of CWA as defined and described by Schedule 1, 2, or 3 of the Chemical Warfare Convention treaty verification, were used in this study. A mixture of four G/V-type nerve simulants (dimethyl methylphosphonate, pinacolyl methylphosphonate, diethyl phosphoramidate, and 2-(butylamino)ethanethiol) and one S-type vesicant simulant (2-chloroethyl ethyl sulfide) were found in each case (sample ionization and introduction methods) to be clearly resolved using the IM(tof)MS method. In many cases, reduced mobility constants (K(o)) were determined for the first time. Ion mobility drift times, flight times, relative signal intensities, and fragmentation product signatures for each of the CWA simulants are reported for each of the methods investigated.  相似文献   

19.
Ion mobility spectrometry after electrospray nebulization and ionization was investigated as a method for the detection of components dissolved in liquids. While electrosprary operating conditions proved promising, greater sensitivity was achieved when the electric potential applied to the sample introduction needle was increased above breakdown potential and a corona discharge was established. Passing the liquid through the corona discharge established a "coronaspray" that efficiently nebulized and ionized the solvent and analytes. In this initial investigation of coronaspray ion mobility spectrometry (CIMS), ion current as a function of potential, temperature, and liquid flow rate was studied; several IMS spectra were obtained; and a continuous monitoring mode of operation was demonstrated. The results from this study indicated that CIMS has potential as a versatile and sensitive detection method for a variety of analytical procedures involving liquid flowing streams such as flow injection analysis, liquid chromatography, capillary zone electrophoresis, and field flow fractionation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号