共查询到19条相似文献,搜索用时 140 毫秒
1.
2.
针对传统粒子群优化算法在解决一些复杂优化问题时易陷入局部最优且收敛速度较慢的问题,提出一种多策略混合的粒子群优化算法(Hybrid Particle Swarm Optimization with Multiply Strategies,HPSO)。该算法利用反向学习策略产生反向解群,扩大粒子群搜索的范围,增强算法的全局勘探能力;同时,为避免种群陷入局部最优,算法对种群中部分较差的个体实施柯西变异,以产生远离局部极值的个体,而对群体中较好的个体施以差分进化变异,以增强算法的局部开采能力。对这3种策略进行了有机结合以更好地平衡粒子群算法全局勘探和局部开采的能力。将HPSO算法与其他3种知名的粒子群算法在10个标准测试函数上进行了性能比较实验,结果表明HPSO算法在求解精度和收敛速度上具有较显著的优势。 相似文献
3.
一种高效的改进粒子群优化算法 总被引:6,自引:1,他引:6
提出了一种高效的改进的粒子群优化策略,把整个群体分为几个子群体,进行子群体的专业化社会分工与信息交换,该策略在提高算法局部搜索能力的同时也兼顾了全局搜索能力。测试表明,与现有方法比较,该方法全局寻优的精度与速度有明显提高。 相似文献
4.
5.
6.
7.
8.
9.
作为群体智能的代表性方法之一,粒子群优化算法(PSO)通过粒子间的竞争和协作以实现在复杂搜索空间中寻找全局最优点。提出了一种改进的粒子群优化算法(MPSO),该算法以广泛学习粒子群优化算法(CLPSO)的思想为基础,主要引入了选择墙的概念。同时在参数的设置中结合高斯分布的概念,以提高算法的收敛性。实验结果表明,改进后的粒子群算法防止陷入局部最优的能力有了明显的增强。同时,算法使高维优化问题中全局最优解相对搜索空间位置的鲁棒性得到了明显提高。 相似文献
10.
11.
建立了评判耦合策略优劣的定量分析方法,发现了现有带中间启动局部搜索(local search,LS)的粒子群混合算法的不足,进而提出一种简单高效的耦合策略.基于该策略,在全局性能优异的综合学习粒子群(comprehensive learning particle swarm optimizer,CLPSO)算法中引入具有快速收敛性能的传统LS方法,提出了带LS的CLPSO混合算法(CLPSO hybrid algorithm with LS,CLPSO-LS).以10维、30维和50维的11个标准函数,对基于不同LS方法的4种混合算法的性能进行大量测试.结果表明,4种CLPSO-LS混合算法的性能均优于CLPSO算法,验证了混合算法的有效性.其中,基于BFGS拟牛顿方法的混合算法的综合性能最优.最后,与8种先进粒子群算法的对比,结果表明CLPSO-LS混合算法作为一种改进CLPSO算法,其性能优于包括已有CLPSO改进算法在内的对比算法,进一步验证了其优越性. 相似文献
12.
Here, we propose a detecting particle swarm optimization (DPSO). In DPSO, we define several detecting particles that are randomly selected from the population. The detecting particles use the newly proposed velocity formula to search the adjacent domains of a settled position in approximate spiral trajectories. In addition, we define the particles that use the canonical velocity updating formula as common particles. In each iteration, the common particles use the canonical velocity updating formula to update their velocities and positions, and then the detecting particles do search in approximate spiral trajectories created by the new velocity updating formula in order to find better solutions. As a whole, the detecting particles and common particles would do the high‐performance search. DPSO implements the common particles' swarm search behavior and the detecting particles' individual search behavior, thereby trying to improve PSO's performance on swarm diversity, the ability of quick convergence and jumping out the local optimum. The experimental results from several benchmark functions demonstrate good performance of DPSO. Copyright © 2008 John Wiley & Sons, Ltd. 相似文献
13.
A hybrid multi-swarm particle swarm optimization to solve constrained optimization problems 总被引:2,自引:1,他引:2
In the real-world applications, most optimization problems are subject to different types of constraints. These problems are
known as constrained optimization problems (COPs). Solving COPs is a very important area in the optimization field. In this
paper, a hybrid multi-swarm particle swarm optimization (HMPSO) is proposed to deal with COPs. This method adopts a parallel
search operator in which the current swarm is partitioned into several subswarms and particle swarm optimization (PSO) is
severed as the search engine for each sub-swarm. Moreover, in order to explore more promising regions of the search space,
differential evolution (DE) is incorporated to improve the personal best of each particle. First, the method is tested on
13 benchmark test functions and compared with three stateof-the-art approaches. The simulation results indicate that the proposed
HMPSO is highly competitive in solving the 13 benchmark test functions. Afterward, the effectiveness of some mechanisms proposed
in this paper and the effect of the parameter setting were validated by various experiments. Finally, HMPSO is further applied
to solve 24 benchmark test functions collected in the 2006 IEEE Congress on Evolutionary Computation (CEC2006) and the experimental
results indicate that HMPSO is able to deal with 22 test functions. 相似文献
14.
15.
一种新的混合粒子群优化算法 总被引:3,自引:3,他引:3
针对标准粒子群算法在优化过程中受初始值影响较大且容易陷入局部极值的缺陷,将鱼群算法中聚群行为的基本思想引入粒子群算法中,据此建立了粒子中心的基本概念,并利用粒子的聚群特性调整粒子的飞行方向与目标位置,从而提出了一种新的混合粒子群算法,旨在改进原粒子群算法的全局收敛能力。为了检验混合粒子群算法的优化特性,采用三种典型的标准函数对五种现行智能算法进行了多方面的测试和比较。实验结果表明,新算法具有良好的搜索精度与速度,有效弥补了标准粒子群算法局部收敛和鱼群算法精度不高的双重缺陷,适用于解决复杂函数优化问题。 相似文献
16.
In recent years, particle swarm optimization (PSO) has extensively applied in various optimization problems because of its simple structure. Although the PSO may find local optima or exhibit slow convergence speed when solving complex multimodal problems. Also, the algorithm requires setting several parameters, and tuning the parameters is a challenging for some optimization problems. To address these issues, an improved PSO scheme is proposed in this study. The algorithm, called non-parametric particle swarm optimization (NP-PSO) enhances the global exploration and the local exploitation in PSO without tuning any algorithmic parameter. NP-PSO combines local and global topologies with two quadratic interpolation operations to increase the search ability. Nineteen (19) unimodal and multimodal nonlinear benchmark functions are selected to compare the performance of NP-PSO with several well-known PSO algorithms. The experimental results showed that the proposed method considerably enhances the efficiency of PSO algorithm in terms of solution accuracy, convergence speed, global optimality, and algorithm reliability. 相似文献
17.
针对种群多样性对粒子群算法的性能影响,提出了一种基于差异进化思想的粒子群算法。该算法采用多生态子群社会结构,利用一种新的全信息粒子作为信息交互的渠道,通过进化过程中的种群衰落监控指导子群间的差异融合,有利于优秀个体的产生,增加粒子间的差异性,提高种群整体品质和算法的收敛性能。最后对八个测试函数进行实验仿真,并与六个改进粒子群算法进行多方面对比。实验结果表明,该算法有效地保持了种群的多样性,在保证收敛速度的同时大幅提高了算法的收敛精度,从理论和实验仿真两个方面证明了算法有很强的全局搜索能力。 相似文献
18.
An adaptive hybrid optimizer based on particle swarm and differential evolution for global optimization 总被引:1,自引:0,他引:1
This paper presents extensive experiments on a hybrid optimization algorithm (DEPSO) we recently developed by combining the advantages of two powerful population-based metaheuristics—differential evolution (DE) and particle swarm optimization (PSO). The hybrid optimizer achieves on-the-fly adaptation of evolution methods for individuals in a statistical learning way. Two primary parameters for the novel algorithm including its learning period and population size are empirically analyzed. The dynamics of the... 相似文献
19.
用粒子群算法求解非线性规划问题时不可避免的会产生不可行点,处理好不可行点是粒子群算法取得良好优化结果的关键。依据粒子的目标函数值与违反约束的程度提出了一种处理不可行点的合理选择方案,并运用融合差分演化的混合粒子群算法求解约束优化问题,数值实验表明该算法的有效性。 相似文献