首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 46 毫秒
1.
左旭坤  苏守宝 《计算机工程》2012,38(13):182-184
为解决粒子群优化(PSO)算法的早熟收敛问题,提出一种群活性反馈PSO进化算法SAF-PSO。利用群活性加速度作为多样性测度,当群活性加速下降时,对粒子的位置和速度分别执行进化和变异操作,增强粒子跳出局部最优的能力,提高寻找全局最优的几率。对基准函数的仿真结果表明,与其他PSO算法相比,该算法具有更强的全局搜索能力和更高的寻优精度。  相似文献   

2.
余伟伟  谢承旺 《计算机科学》2018,45(Z6):120-123
针对传统粒子群优化算法在解决一些复杂优化问题时易陷入局部最优且收敛速度较慢的问题,提出一种多策略混合的粒子群优化算法(Hybrid Particle Swarm Optimization with Multiply Strategies,HPSO)。该算法利用反向学习策略产生反向解群,扩大粒子群搜索的范围,增强算法的全局勘探能力;同时,为避免种群陷入局部最优,算法对种群中部分较差的个体实施柯西变异,以产生远离局部极值的个体,而对群体中较好的个体施以差分进化变异,以增强算法的局部开采能力。对这3种策略进行了有机结合以更好地平衡粒子群算法全局勘探和局部开采的能力。将HPSO算法与其他3种知名的粒子群算法在10个标准测试函数上进行了性能比较实验,结果表明HPSO算法在求解精度和收敛速度上具有较显著的优势。  相似文献   

3.
一种高效的改进粒子群优化算法   总被引:7,自引:1,他引:6  
提出了一种高效的改进的粒子群优化策略,把整个群体分为几个子群体,进行子群体的专业化社会分工与信息交换,该策略在提高算法局部搜索能力的同时也兼顾了全局搜索能力。测试表明,与现有方法比较,该方法全局寻优的精度与速度有明显提高。  相似文献   

4.
一种结合自适应局部搜索的粒子群优化算法   总被引:1,自引:1,他引:0  
肖丽  张伟  张元清 《计算机科学》2007,34(8):199-201
本文提出一种结合自适应局部搜索的混合粒子群优化算法.该方法在粒子群优化算法的全局搜索过程中,使用能根据当前种群搜索状态自适应地调整局部搜索空间大小的局部搜索算法加强其局部搜索能力.采用了著名的基准函数对算法的性能进行测试,并与其他已有算法进行了比较.结果表明,这种混合粒子群优化算法能获得更高的搜索成功率和质量更好的解,特别在高维复杂函数优化上具有很强的竞争力.  相似文献   

5.
为了改善差分进化粒子群算法的局部搜索能力和收敛速度,提出了一种混沌差分进化的粒子群优化算法。该算法利用信息交换机制将两组种群分别用差分进化算法和粒子群算法进行协同进化,并且将混沌变异操作引入其中,加强算法的局部搜索能力。通过对三个标准函数进行测试,仿真结果表明该算法与DEPSO算法相比,全局搜索能力、抗早熟收敛性能及收敛速度大大提高。  相似文献   

6.
分层粒子群优化算法   总被引:3,自引:2,他引:1  
马翠  周先东  杨大地 《计算机工程》2009,35(20):194-196
针对粒子群优化算法存在进化后期局部搜索能力不强、收敛速度变慢的问题,提出一种分层粒子群优化算法。利用标准粒子群优化算法在整个搜索空间内进行全局搜索,由全局搜索获得的较优个体产生局部搜索区域,在局部区域内进行进一步搜索。为避免陷入局部最优,采用动态调整局部搜索区域的策略,保持算法的全局收敛性。通过典型测试函数计算表明,该算法的收敛速度和局部搜索能力有明显改善。  相似文献   

7.
针对粒子群优化算法在优化多极值点复杂问题时容易陷入局部极值的不足,提出一种新的分阶段进化的粒子群优化算法。该方法进化过程分为两个阶段,每个阶段对应一个不同的模型,通过结合这两种模型的各自优点有效地降低群体陷入局部最优。仿真实验结果表明,对于复杂多极值函数优化问题,本文算法比标准粒子群算法的寻优能力更强。  相似文献   

8.
在求解多目标优化问题时,针对粒子群优化算法容易陷入局部极值的现象,提出了一种组合粒子群和差分进化的多目标优化算法,使用粒子群优化算法和差分进化算法共同产生新粒子,通过一个判断因子控制两种算法的使用比例,并对粒子群优化算法的速度更新公式进行了改变,以提高搜索效率.通过三个测试函数进行了仿真,并同NSGA-Ⅱ、MOPSO-CD进行了比较.实验结果表明改进算法求得的Pareto解集收敛性和多样性好,并且算法稳定性高,运行速度快.  相似文献   

9.
作为群体智能的代表性方法之一,粒子群优化算法(PSO)通过粒子间的竞争和协作以实现在复杂搜索空间中寻找全局最优点。提出了一种改进的粒子群优化算法(MPSO),该算法以广泛学习粒子群优化算法(CLPSO)的思想为基础,主要引入了选择墙的概念。同时在参数的设置中结合高斯分布的概念,以提高算法的收敛性。实验结果表明,改进后的粒子群算法防止陷入局部最优的能力有了明显的增强。同时,算法使高维优化问题中全局最优解相对搜索空间位置的鲁棒性得到了明显提高。  相似文献   

10.
基于粒子群优化算法的约束布局优化   总被引:19,自引:2,他引:17  
布局优化是NP难问题,也是复杂的非线性约束优化问题.针对这个问题,将新的基于粒子群优化的方法应用于布局参数的优化,提出了适合粒子群优化的约束处理,并通过与直接搜索算法的混合,加强了算法在局部区域的搜索能力.通过实例将该算法与乘子法以及基于遗传算法的布局优化方法进行了比较.仿真结果表明,该算法可以提高布局优化问题解的质量,同时降低计算费用.  相似文献   

11.
求解二次分配问题的离散粒子群优化算法   总被引:17,自引:0,他引:17       下载免费PDF全文
提出了一种求解二次分配问题的离散粒子群优化算法. 根据二次分配问题及离散量的特点, 重新定义了粒子的位置、速度等量及其运算规则, 为抑制早熟停滞现象, 为粒子和粒子群分别定义了个体多样性和平均多样性. 算法中定义了排斥算子来保持粒子群的多样性, 使用局部搜索算子来提高算法的局部求精能力, 使算法在空间勘探和局部求精间取得了较好的平衡. 在 QAPLIB 的实例上的仿真结果表明, 离散粒子群优化算法具有良好的性能.  相似文献   

12.
提出一种基于差分进化(DE)和粒子群优化(PSO)的混合智能方法—–DEPSO算法,并通过对10个典型函数进行测试,表明DEPSO算法具有良好的寻优性能。针对单隐层前向神经网络(SLFNs)提出一种改进的学习算法—–DEPSO-ELM算法,即应用DEPSO算法优化SLFNs的隐层节点参数,采用极限学习算法(ELM)求取SLFNs的输出权值。将DEPSO-ELM算法应用于6个典型真实数据集的回归计算,并与DE-ELM、SaE-ELM算法相比,获得了更精确的计算结果。最后,将DEPSO-ELM算法应用于数控机床热误差的建模预测,获得了良好的预测效果。  相似文献   

13.
适应度函数的设计在基于搜索的测试用例生成技术中占据重要的位置,然而在某些特殊的程序中,如存在嵌套、非结构性跳转或因return,break等语句跳出循环的程序,已有的适应度函数无法评价到所有的分支.目前的方法是修改程序的源代码,以使每个分支得到评价.但修改源代码不但可能影响程序的原有结构、引入错误,而且很难实现自动化.针对这一问题,提出一种基于模式组合的粒子群优化测试用例生成方法.首先,将分支条件定义为\"模式\",即,一类具有相同特征且能提高适应度值的个体集合,并改变其分支函数的插桩方式,可解决分支条件不完全评价的问题;然后,设计一种新的交叉算子,寻找到所有使模式的分支函数值最小的个体,将这些个体中含有模式的部分通过交叉算子组合到一个个体上,既可防止模式在进化过程中被破坏,又可因多种模式的组合而提高个体的适应度值;最后,使用局部搜索策略对种群中的最优个体进行搜索,提高粒子群优化算法的局部搜索精度,进一步提高测试用例生成效率.为了评价该方法的有效性,基于一组基准程序和开源程序进行实验.实验结果表明:对于含有模式的程序,该测试用例生成方法与已有方法相比,在覆盖率和平均进化代数上均有明显优势.  相似文献   

14.
差分进化混合粒子群算法求解项目调度问题*   总被引:1,自引:0,他引:1  
针对求解资源受限项目调度问题(RCPSP),提出了基于差分进化(DE)的混合粒子群算法(PSODE)。通过在PSO种群和DE种群之间建立一种信息交流机制,使信息能够在两个种群中传递,以避免个体因错误的信息判断而陷入局部最优点。采用标准测试函数和具体算例进行检验,结果表明PSODE算法可以较好地解决RCPS问题。  相似文献   

15.
钱晓宇  方伟 《控制与决策》2021,36(4):779-789
为提升粒子群优化算法在复杂优化问题,特别是高维优化问题上的优化性能,提出一种基于Solis&Wets局部搜索的反向学习竞争粒子群优化算法(solis and wets-opposition based learning competitive particle swarm optimizer with local se...  相似文献   

16.
17.
融合粒子群和局部邻域搜索的优化算法   总被引:2,自引:0,他引:2  
为解决采用单一搜索策略的算法很难兼顾全局搜索和局部搜索,且易陷入局部优化的问题,提出一种融合粒子群优化和局部邻域搜索思想的新算法(Ne-PSO).采用混合搜索策略,通过对全局最优粒子信息的交互和反馈,并行进行全局搜索和局部搜素.同时,新算法引入禁忌策略,通过设置禁忌邻域来限制粒子的搜索区域,有效规避了局部优化.通过4个经典函数的测试,验证了该算法在寻优速度、精度和成功率方面的优异性能.  相似文献   

18.
为了进一步提高量子行为粒子群优化(QPSO)算法的全局收敛性能,有效改善算法中存在的粒子早熟问题提出一种基于完全学习策略的改进QPSO算法(CLQPSO).该学习策略改变了QPSO中局部吸引子的更新方式,充分利用了种群的社会信息.采用8个测试函数对算法性能进行比较分析.实验结果表明,所提出的改进算法不仅收敛速度快,而且全局收敛能力好,收敛精度优于PSO算法和QPSO算法.  相似文献   

19.
混合粒子群优化算法研究   总被引:5,自引:0,他引:5  
提出将Hooke Jeeves模式搜索方法嵌入粒子群优化算法中,以此构建混合粒子群优化算法.此外,在搜索过程中还加入变异操作来增加种群多样性,以避免早熟收敛.其中,局部搜索增加了算法的开发能力,而变异操作提高了算法的探测能力.探测与开发的折中则通过两个域值变量来完成.大量的测试函数研究表明,混合粒子群优化算法局部搜索能力有显著提高,且搜索到全局最优的概率更高.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号